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One of the principal recent drivers of work on RTP congestion control has been the RTCWEB 
work, which will enable web-based platforms to exchange real-time media without plugins. 
In that context, it may be useful to describe how RTP congestion control mechanisms might 
feedback to an RTCWEB application, so that it could prioritize flows, lower offered load on the 
network, or change FEC parameters to handle loss.
 
Unfortunately, the first and most basic fact here is that things are much worse than they may 
seem.  The RTCWEB application architecture sees the browser as a platform for downloaded 
web applications, so any feedback which will result in updated application preferences must 
pass from the browser platform to the Javascript-based application.  The likelihood that the 
javascript application programmer will understand the full set of RTP feedback mechanisms 
is unfortunately small, and the likelihood that they will be fully conversant in the details of 
alterations which could be made in media parameters or FEC to handle changing network 
conditions is equally small.  The threading model of Javascript in browsers also risks blocking 
that may affect (or be affected by) updates from congestion control routines, which makes timely 
response problematic. Further, the downloaded application is fundamentally untrusted by the 
overall system, so certain aspects of its behavior will be constrained so as to protect against 
attacks by malicious javascript.  While this is useful from a security perspective, it means that 
there is no single locus of control for managing any feedback.  A javascript application may be 
able to express preferences or constraints, but it is the browser (or its equivalent in a mobile 
platform) which must perform.  Lastly, the basic mode of operation presumes that there may be 
flows coming to an application from multiple endpoints.  This means that some indications of 
congestion related to a single flow will  be early indications of a problem that will impact them 
all, while others will be restricted to a network segment used by only a single flow.  Generalized 
responses that impact all flows may thus needlessly impact flows which are actually performing 
well.
 
It is tempting in that context to give up entirely on feedback mechanisms, in favor of flow-based 
fairness algorithms that do not require application intervention.  Unfortunately, it is ultimately 
only the application which can determine how best to manage offered load.  As an example, 
imagine a poker application which has both a main video stream for the player currently a 
betting, a series of thumbnail streams for other players at the virtual table, and data streams 
which go to the other players and a house server.  If a local network gets congested, the 
application might decide that it is best to request most of its peers to lower the fidelity of the 
thumbnail streams to static or near-static pictures, while maintaining good fidelity for the current 
player and a reasonable fidelity for the next up in table order.  A flow-based fairness algorithm, 
in contrast, might over-allocate resources to the thumbnail flows while letting the betting player’s 
video degrade to the point where all the other players miss the “tell”.  Note as well that the 
constant shift in which player bets makes it critical which period is used to calculate fair use of 
resources.  If the calculation period does not  match the application’s timing, the result may both 
have a larger than appropriate impact on game play and have a less than appropriate impact on 
congestion. 
 
This hints, however, at a potential approach that may fit both the RTCWEB application context 
and the need for effective congestion control.  Rather than attempting to feedback data on 
congestion and request application adjustments, the overall system should be constructed 
with the assumption that the Javascript application feeds forward data about priorities and 



preferences to the underlying browser platform (or its mobile equivalent).  At application 
initiation it would signal the priorities and constraints or preferences related to each of the 
tracks; it could then adjust those in messages to the browser as the application conditions 
changed.  
 
To return to our poker example, when the betting player submitted the new bet, the receipt of 
that information at the application would enable it to tell the browser which tracks were now the 
highest priority.  In essence, I believe we want the application to use something it knows (“Play 
has shifted so that *this* is now the betting player”) to adjust the priorities consistently, rather 
than have it hear something about the network (“This flow got the following RTCP feedback”) 
and react.  Reactive processing may  both be difficult for the javascript application and not as 
timely as needed for changing conditions.   On an overprovisioned network, these updates 
from the Javascript application to the browser may be un-needed, and applications without flow 
priority requirements may choose to run without providing this additional data.  When present, 
though, the browser can combine the data from the application (and any other applications 
running within its context) with its knowledge of network conditions in order to manage the 
priorities, offered load, and FEC parameters.
 
Moving this up one layer of indirection leaves, however, one very basic problem unsolved:  what 
sort of fairness does the browser (or mobile platform) use as a model to combine the application 
preference with its knowledge of network conditions?   Essentially, I believe the browser should 
treat the application’s priority and constraint information as if it were QoS instructions for a 
small network within the browser itself.  The priority and constraints expressed from Javascript 
result in QoS-like buckets inside the browser’s “internal network”; if it gets ECN messages or 
other indications of congestion, it reacts by managing flows in much the same way a router with 
those QoS buckets would.  These QoS instructions also influence how it then offers load to the 
successor network off the browser, but obviously its control is less there; an enterprise network 
may assign very different priorities to poker traffic than the browser would.  
 
With an application like our poker example, we already have small real time packets (audio), 
large real time packets (video), web traffic, and peer-to-peer to peer game play.  While I have 
no data to support this intuition, my personal guess is that per-bit congestion models may be a 
better fit for these applications and networks than per-packet congestion models.  The work in 
Byte and Packet Congestion notification highlights some of the impact may have on fairness, 
as does RFC 4828's description of TRFC-SP. Further research is certainly warranted on this 
point.  In particular, if there is some way for the browser to infer the likely type of congestion 
from signals sent by other participants, its internal equivalent to AQM may manage the overall 
set of flows much more effectively.  
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