Congestion Control Workshop

Constraints

July 28, 2012

Goals

- Goal of this session is to have a discussion about observations paper authors have made regarding the deployment status and constraints that impact the solutions.
- Want to increase understanding of topics like:
 - Too large buffers cause problems for real-time traffic
 - The entire community has been stuck on bandwidth for over a decade.
 - Real-time traffic suffers from queue sharing
 - Interworking between different layers is needed

Latency

150ms	Historical "upper bound" on latency for VoIP
100ms	Echoing characters is hard to perceive as delayed
100ms	RTT Jim's house to San Francisco via Comcast
75ms	RTT Boston/San Francisco via a good path
20ms	Remote rubber banding is "solid" and feels attached
16ms	60hz refresh rate latency
13ms	One full sized TCP packet @ 1Mbps
7.5ms	Jim's minimum cable RTT
< 5ms	Gamers (to reduce probability of getting "fragged")

Latency, cont.

Conclusion: You can't give away <u>any time</u> unnecessarily. Period.
You must <u>always</u> be minimising the latency, everywhere. Your latency budget is *always* overdrawn for many paths.

The Network Edge

- Packet trains arriving at line rate at the edge of the network have become very long, and head of line blocking causes major latency spikes.
- Breaking up these bursts has become necessary. Edge devices (broadband gear, home routers) must solve this mess.
- Causes: smart hardware, bandwidth uber-alles benchmarking, nasty applications, sharded web sites, ack merging in broadband gear destroying ack clocking, etc....

Buffers

- Buffers are dimensioned incorrectly and it is not possible to statically size buffers, both for inherent delay properties and because the bandwidth is continually varying.
- BitTorrent-style applications fill uplink queues without the user realizing it.
- The number of devices sharing Cable/DSL links keeps increasing.
- Mechanisms to diagnose buffering problems aren't currently adequate.
- Shared links means that other devices fill queues without user's realising it.

Recognizing Buffer Problems?

- Operators currently put stock in independent test results (such as speedtest.net) that measure TCP throughput on a long-running flow, and round-trip latency on an unloaded link.
- They do not routinely look at statistics of round-trip latency on a loaded link and sometimes dismiss results suggesting that they are capable of buffering > 5 seconds of data before dropping a packet.

Queue Sharing

- Competing TCP flows need a Round-Trip-Time of buffering.
- Without separating RT traffic from TCP in separate queues unacceptable delay or delay jitter is the result.
- It is the uncoordinated congestion management which causes the problems which stem from queue-sharing.
- Broadband service has but a single queue available for all of a customer's data traffic. Only ISP's telephony services today have access to other queues, despite the hardware being capable of multiple queues.
- End-to-End QoS is not deployable, but QoS at the ISP/sender and ISP/receiver interfaces might be enough.

Layer Interworking

- John: "We're acting as if we believe congestion will magically be solved by a new transport algorithm. It won't."
 - We need action at the Network layer, the Transport layer, and the Application layer, at a minimum.
 - •The application layer is the only practical place to balance what piece(s) to constrain to lower bandwidths.
- All flows relating to a user session should have a common congestion controller.

For many applications, audio is much more critical than video. For example, video may back off, but the audio remains un changed.