
���
Congestion Control for
Real-time Media: ���
History and Problems	

Mark Handley, UCL	

What is Congestion Control all About?	

  Bulk Transfer	

  Goal is to transfer n bytes in zero time.	

(subject to a few minor limitations of the hardware)	

  Implication	

  If the network isn’t congested when doing bulk
transfer, something is broken.	

  Congestion is normal.	

Primary Goals of Congestion Control ���
(from a network point of view)	

1.  Avoid congestion collapse	

  Network must work.	

2.  Some sort of fairness	

  All users must get some service.	

Primary Goals of Congestion Control ���
(from a network point of view)	

1.  Avoid congestion collapse	

  Network must work.	

2.  Some sort of fairness	

  All users must get some service.	

Congestion Behaviour	

  Desired behaviour: goodput saturates at network
capacity	

Goodput

Offered Load

Congestion Collapse	

  Goodput decreases as network becomes overloaded	

Goodput

Offered Load

Congestion Collapse	

  Goodput decreases as network becomes overloaded	

Goodput

Offered Load

what’s
in this gap?

Congestion���
Collapse	

Problem: Classical congestion collapse:	

Paths clogged with unnecessarily-retransmitted
packets [Nagle 84].	

Fix: 	

Modern TCP retransmit timer and congestion control
algorithms [Jacobson 88].	

Goodput

Offered Load

unnecessary
retransmissions

Fragmentation-based ���
congestion collapse	

Problem:	

Paths clogged with fragments of packets invalidated
because another fragment (or cell) has been
discarded along the path. [Kent and Mogul, 1987]	

Fix:	

MTU discovery [Mogul and Deering, 1990]	

Early Packet Discard in ATM networks
[Romanow and Floyd, 1995].���
	

Goodput

Offered Load

fragments
that cannot be
reassembled

Congestion collapse from
undelivered packets	

Problem: Paths clogged with packets that are discarded before

they reach the receiver [Floyd and Fall, 1999].	

Fix: Either end-to-end congestion control, or a ``virtual-circuit''

style of guarantee that packets that enter the network will be
delivered to the receiver.���
	

Congestion collapse
from
undelivered packets	

Problem: Paths clogged with packets that are
discarded before they reach the receiver [Floyd
and Fall, 1999].	

Goodput

Offered Load

Packets that
will be
discarded
downstream

Congestion collapse
from
undelivered packets	

Problem: Paths clogged with packets that are
discarded before they reach the receiver [Floyd
and Fall, 1999].	

Goodput

Offered Load

Packets that
will be
discarded
downstream

Fix: Either :	

  end-to-end congestion control, or	

  ``virtual-circuit'' style of guarantee that packets that

enter the network will be delivered to the receiver.���
	

Congestion Control	

Since 1988, the Internet has remained functional despite
exponential growth, routers that are sometimes buggy or
misconfigured, rapidly changing applications and usage
patterns, and flash crowds.	

This is largely because most applications use TCP, and
TCP implements end-to-end congestion control.���
���
	

Primary Goals of Congestion Control ���
(from a network point of view)	

1.  Avoid congestion collapse	

  Network must work.	

2.  Some sort of fairness	

  All users must get some service.	

TCP’s window is all the packets TCP has sent for which
it has not yet seen the acknowlegment.	

Data packets

Acks for data
packets

TCP’s congestion control adapts the window to
fit the capacity available in the network.	

  Each round-trip time, increase window by one packet.	

  If a packet is lost, halve the window.	

TCP’s
Window

Time (RTTs)

TCP Fairness	

x+y = l+qmax
(queue overflows)

x = y (fairness)

Flow y’s
window

Flow x’s
window

Queue

Flow x

Flow y

Over time, TCP equalizes the windows of
competing flows	

Window
of
flow 2

Window
of
flow 1

Flow 1

Flow 2

w1 + w2 = 80
(Queue at fills up) 2

Over time, TCP equalizes the windows of
competing flows	

W
indow of flow 2

Window of flow 1

Flow 1

Flow 2

The two windows
are similar most
of the time

The model: Packet size B bytes, round-trip time R secs, no queue.	

  A packet is dropped each time the window reaches W packets.	

  TCP’s congestion window:	

  The maximum sending rate in packets per roundtrip time: W	

  The maximum sending rate in bytes/sec: W B / R
  The average sending rate T: T = (3/4)W B / R

  The packet drop rate p:

  The result:

TCP Modelling: The "Steady State" Model	

Is TCP’s fairness what we want?	

  Probably not.	

  1/R relationship not wonderful	

• But does mean you can reduce packet loss by
adding big buffers! 	

  1/sqrt(p) relationship not wonderful	

• Doesn’t work well for high-speed flows.	

  But at least it avoids starvation.	

What, precisely, are we controlling?	

  TCP controls the congestion window in bytes.	

  For bulk transfer, usually this results in controlling the

number of 1500 byte packets per second sent.	

  Real-time media is different.	

  Audio: one packet per (say) 20ms.	

  Video: 30 frames per second.	

  Don’t want to add extra delay.	

Video congestion control	

  30fps x 1500 bytes = 360Kbit/s	

  Above this rate, we’re sending more than one packet

per frame (on average).	

  But no real precision on number of packets per frame

til (say) > 1Mbit/s	

  Below this rate, what to do?	

  Just send smaller packets at 30pps?	

What’s the bottleneck? 	

  Serial line: bottleneck is in bits/second.	

  Doesn’t matter how many packets/sec, so long as you

include the packet headers in the calculation.	

  WiFi:	

  At higher bitrates, MAC dominates.	

  Reducing the packet size makes little difference to

available capacity.	

  Need to reduce packets/sec to relieve congestion.	

What’s the bottleneck?	

  Really do need to adapt packets/sec, not just bytes/sec.	

  For video, with it’s natural framerate, this clashes with

what the application would prefer to do to get low
latency.	

Minimal Primary Goals of Congestion Control ���
(from a network point of view)	

  Avoid congestion collapse	

  Avoid starvation	

  Of TCP flows	

  Of real-time flows	

  Sharing same FIFO queue	

Goals of Congestion Control ���
(from an application point of view)	

  Robust behavior	

  Predictable behavior	

  Low latency	

	

Robust Behavior���
	

  Good quality when network is working well.	

  Still works when network is working poorly.	

  Loss is low enough for session still be be useful.	

Predictable Behavior���
	

  Variable quality is bad for users.	

  User studies:	

  When quality varies, rate overall quality close to
minimum of qualities seen.	

Low Latency���
	

  If you share a congested link with TCP, good luck to you.	

  Bufferbloat means you’ll often get unwanted latency

for your multimedia sharing the link.	

  Delay based vs loss based congestion control.	

  Delay-based congestion control can keep latency low.	

  But if you’re competing in the same queue as TCP,

TCP will dictate the latency.	

Streaming vs Interactive Media���
	

  Streaming: 	

  Use buffering to smooth out throughput variation	

  Streaming over TCP is common.	

  Streaming over UDP is probably better, but…	

  Interactive:	

  Can’t afford to buffer (much) or latency will be

unacceptable.	

TCP-Friendly Rate Control (TFRC) ���
RFC 5348	

  Goal: 	

  Same throughput as TCP, but smoother	

  Mechanism: 	

  Measure loss, RTT.	

  Use TCP model to determine sending rate.	

TFRC Problem���
	

  Oscillation with low statmux bottleneck	

  Eg. TFRC is only flow on a DSL link.	

TFRC Problem���
	

  Oscillation with low statmux bottleneck	

  Solution: short-term rate adaptation based on RTT.	

Is this all the wrong approach?���
	

  TFRC assumes network is in charge of codec.	

  Congestion control clocks out the packets into the

network (just like TCP does).	

  Assumes codec can produce data at demanded rate.	

Video is Inherently Variable	

  Content sensitivity.	

  Motion, scene changes, etc	

  MPEG 2:	

I-frame: 50KB, P-frame: 25KB, B-frame: 10KB.	

  Hard to produce data at exactly a demanded rate
without excessive buffering or ugly quality changes.	

What if codec is in charge?���
	

  Net tells codec mean rate to send.	

  Codec matches mean rate, but not on short timescales.	

The low statmux problem���
	

  Known congestion control mechanisms work well if they

can respond fast to changes.	

  If not, can bump into linkspeed cap, get very high loss,

and then overreact. Result: Oscillation	

Linkspeed characterization���
	

  Techniques for inferring linkspeed of lowest speed link	

  pathchar and its successors	

  Send short packet trains. 	

  Measure timing accurately.	

  Can infer linkspeed from relative delay.	

  If you know the linkspeed, you can avoid exceeding it,
even for short durations.	

Link unpredictability���
	

  WiFi	

  fading	

  link-local RTX	

  WiFi bitrate adaptation	

  Fair queuing.	

  Eg WFQ in home gateways.	

RTP���
	

  RTCP feedback:	

  What can be sent?	

• Loss rate, RTT need measuring.	

• RTP XR allows more. 	

  How often?	

• Not often enough for fine-grain RTT measurement	

  We wrote these standards. No need to be limited, if we
know what we want.	

Circuit Breakers���
	

  Measure loss-rate, RTT.	

  Calculate TCP rate.	

  Stop sending if application rate is too high for too

long.	

  Avoid congestion collapse. Good!	

  But miss out on potential benefits of good congestion

control.	

Summary	

  We know how to do reasonable congestion control.	

  But only if CC is in charge.	

  Probably not acceptable	

  Only if we change pps rate, not just packet size.	

  This is a multifaceted problem – need to balance
application requirements with reasonable network
behaviour.	

  Not (yet) a solved problem.	

