
Some Notes on Threat Modelling Congestion Management

Eric Rescorla
RTFM, Inc.

ekr@rtfm.com

Abstract
When designing any piece of Internet technology, one
must consider the question of how it behaves in the pres-
ence of malicious behavior; congestion control is no ex-
ception here.

1 Introduction

IETF congestion protocols are generally designed under
a nonadversarial model: If Alice and Bob want to ex-
change data at the full rate of their access links, without
regard to the impact on other flows sharing the same in-
termediate network links, nobody from the IETF Trans-
port Area will come to their houses and arrest them for
violating RFC 5405 [EF08]. Rather, the IETF attempts to
design protocols that provide acceptable congestion be-
havior when used and assume that network providers will
appropriately traffic shape non-compliant traffic to pre-
vent it from consuming all available bandwidth, thus ad-
dressing the adversarial case to some extent. This paper
addresses a number of aspects of adversarial congestion
control that are not well handled within this paradigm.

2 Attacker Types And Objectives

In general, an attacker will have one of two objectives
with respect to a given flow:

• Cause more traffic to be sent than otherwise would
• Cause less traffic to be sent than otherwise would

Note that we are deliberately sidestepping the ques-
tion of what division of traffic is appropriate. The IETF
congestion algorithms are designed to produce a given
division of traffic in the equilibrium state. Our sole con-
cern is that it be difficult for the attacker to alter that
equilibrium, not that that equilibrium is actually equi-
table. However, for convenience, we refer to the fraction
of traffic that a flow should have as its fair share and a

flow which uses more than its fair share as overconsum-
ing while a flow which uses less than its fair share as
underconsuming.

We must also consider three different attacker types:

• Unilateral attack by a sender or receiver
• Attack by a cooperating sender/receiver pair
• Attack by a third party who is neither a sender or

receiver for a given flow

In general, any combination of attacker and objectives
is possible. For instance, a sender and receiver might
wish to cooperate to exchange more than their fair share
of traffic on a given path. More exotically, a third party
might want to act to cause a sender and receiver to un-
derconsume (to leave more room for his own traffic)
or to overconsume (as a form of a denial of service at-
tack.) A properly designed congestion management sys-
tem should prevent all of these attack modes.

3 Some Specific Cases

3.1 Two-party Overconsumption
The paradigmatic case is one in which a sender and re-
ceiver cooperate to exchange more than their fair share.
As mentioned above, because both sides are explicitly
noncompliant, this is not strictly a protocol issue. For
that reason, this case has been extensively studied (see,
for instance, [FF99]) and is probably the easiest to deal
with via traffic shaping by intermediate network ele-
ments. The major challenge for those elements is to de-
termine what sending rate to clamp a given flow/sender
to (or more generally, how to prioritize traffic between
flows). Two major approaches are available:

• Attempt to classify flows by sender and divide
available bandwidth between senders regardless of
which protocol they are using.

1

ekr@rtfm.com


• Attempt to identify noncompliant flows (e.g., those
not properly responding to congestion signals) and
penalize them.

There are difficulties with both of these approaches,
especially as traffic shaping must often be done at high
speed in the network core. The first approach requires the
ability to determine which flows correspond to a given
sender/receiver pair (note that if one only attempts to pro-
vide fairness between individual flows, then senders and
receivers will just use multiple flows). This can be prob-
lematic in face of an attacker which can forge addressing
information since they can make a given logical flow ap-
pear to be between multiple hosts.1 The second approach
requires the ability to classify traffic and is therefore sub-
ject to techniques which make one form of traffic appear
to be another. Consider, for instance, a flow which ap-
pears to be TCP but actually uses non-TCP-compliant
rate control: An intermediate network element would
need to do extensive analysis of such a flow in order to
determine that it was misbehaving.

3.2 Receiver-Initiated Overtransmission
Moving into the field of protocol design, it is possible
to have cases where the sender wishes to be compliant
but the receiver does not (the dual of this case, where
the sender does not wish to comply, is a straight traffic
flooding attack and cannot really be addressed by pro-
tocol mechanisms). The receiver might wish to avoid
congestion control for a number of reasons, ranging from
simply getting more than its fair share of traffic to mount-
ing what’s effectively a DoS attack on the sender.

Savage et al.[SCWA99] describe a number of attacks
and defenses for the specific case of TCP. For instance,
they describe an attack in which the receiver splits up an
acknowledgment into multiple acknowledgements and
(because TCP’s algorithms are phrased in terms of seg-
ments) forces the senders’s congestion window to be
much larger than it should be. [Note: I do not know
if this has been fixed in more modern TCP implemen-
tations.] Another example is that the receiver can send
acknowledgements for packets it has not yet received,
thus increasing the sender’s transmission rate; this mech-
anism does not preserve reliability and so in the context
of reliable protocols is primarily useful for mounting an
amplification DoS attack on the sender. Thus, for in-
stance, a receiver with a very slow network could cause
the sender to transmit far more data than he can actually
receive. Moreover, in the context of unreliable proto-
cols such as those used for voice and video can be used
to increase sending rate (and hence quality) at the cost

1Obviously, this attack technique does not work when the unit of
fairness is the access link.

of some packet loss (though potentially the packet loss
will be small since since other senders will get out of the
way.)

The general strategy for preventing attacks of this type
is, as Savage et al., indicate, to design the protocol in
such a way that if the receiver provides bogus feedback
it is either ignored or causes the sending rate to decrease
rather than increase. For instance, false ACKing could
be prevented by having the ACKs include proof that the
receiver had seen the data being acknowledged. As far
as I know, no widely deployed protocol is designed using
these principles.

3.3 Third-party Traffic Manipulation
In an environment without overall network-level fairness
mechanisms, an attacker who wishes to overconsume can
simply send more than his fair share of traffic and ex-
pect other, compliant, flows to back off, thus making
room for his traffic. However, if there are overall fairness
mechanisms in place, then this strategy will be less effec-
tive. However, an attacker can potentially manipulate the
congestion algorithms of compliant implementations to
cause them to back off, thus reserving more capacity for
itself. For instance, the Security Considerations section
of RFC 5681 states:

This document requires a TCP to diminish its
sending rate in the presence of retransmission
timeouts and the arrival of duplicate acknowl-
edgments. An attacker can therefore impair
the performance of a TCP connection by either
causing data packets or their acknowledgments
to be lost, or by forging excessive duplicate ac-
knowledgments.

Similarly, it is possible for an attacker to mount attacks
like those described by Savage in order to increase the
traffic sending rate between two endpoints.

In general, it does not seem possible to stop an on-path
attacker who can block packets from throttling other peo-
ple’s streams, since he can always simulate network con-
gestion and we want flows to back off when they believe
they have experienced congestion. However, it should be
possible to prevent attack by off-path attackers and on-
path attackers who can only inject packets. The general
strategy is to cryptographically protect feedback packets
so that an on-path attacker cannot

4 The RTCWEB Setting

The RTCWEB [Alv12] setting is an interesting combina-
tion of first and third-party attackers. In RTCWEB, we
have two media endpoints which are exchanging large

2



traffic volumes but under partial control of a third party
signaling server which may be malicious and which me-
diates call setup between the parties. Moreover, in the
general case it is possible for a signaling server to recruit
new endpoints without their consent (e.g., by using an
advertising network to emplace malicious JS). The un-
derlying technical assumption is that the browser acts as
the trusted computing base which enforces correct be-
havior in the face of even malicious JS. Thus, it is not
safe to send traffic just because the JS tells you to.

The solution RTCWEB has adopted has been to use
ICE [Ros10] as a coarse-grained check of communi-
cations consent. The browser refuses to send traf-
fic between two endpoints until ICE checks have com-
pleted [Res12], thus verifying that the media sink desires
to receive the traffic. Periodic checks will then be re-
quired in order to continue sending media. Thus, a re-
ceiver which wishes to not receive traffic at all or which
detects obvious noncompliance can stop responding to
STUN checks, thus completely throttling the media.

However, this is a relatively coarse mechanism (partly
due to the lack of specified congestion control algorithms
for media traffic); the receiver can only force traffic to
stop appearing, not adjust the sending rate. In order to
do a better job we would need a congestion control sys-
tem for RTCWEB based on the principles suggested in
Section 3 but which was also suspicious of the signaling
server. In particular, it needs to be designed so that:

• It is not possible to generate explicit congestion
feedback without being on-path.

• On-path attackers cannot send explicit congestion
feedback that has a bigger impact on sending rates
than they could achieve just by blocking traffic.

• Feedback which tends to increase the sending
rate must include some information known to the
browser but not made available to the signaling
server (thus preventing the signaling server from in-
creasing the sending rate unilaterally).

While we can do an acceptable job of controlling mis-
use with the system as-is, if we are going to design a
new set of mechanisms, adherence to these principles is
an important part of making them as misuse resistant as
possible.

References

[Alv12] H. Alvestrand. Overview: Real Time Proto-
cols for Brower-based Applications. draft-
ietf-rtcweb-overview-04, jun 2012.

[EF08] L. Eggert and G. Fairhurst. Unicast UDP
Usage Guidelines for Application Design-
ers. RFC 5405, November 2008.

[FF99] Sally Floyd and Kevin Fall. Promoting the
use of end-to-end congestion control in the
internet. IEEE/ACM Trans. Netw., 7(4):458–
472, August 1999.

[Res12] E. Rescorla. RTCWEB Security Architec-
ture. draft-ietf-rtcweb-security-arch-02, jun
2012.

[Ros10] J. Rosenberg. Interactive Connectivity Es-
tablishment (ICE): A Protocol for Network
Address Translator (NAT) Traversal for Of-
fer/Answer Protocols. RFC 5245, April
2010.

[SCWA99] Stefan Savage, Neal Cardwell, David
Wetherall, and Tom Anderson. Tcp con-
gestion control with a misbehaving re-
ceiver. ACM COMPUTER COMMUNICA-
TIONS REVIEW, 29:71–78, 1999.

3


	Introduction
	Attacker Types And Objectives
	Some Specific Cases
	Two-party Overconsumption
	Receiver-Initiated Overtransmission
	Third-party Traffic Manipulation

	The RTCWEB Setting

