
Position paper on Web Packaging for 
the ESCAPE workshop 
Date: 2019-06-01 

Intro 
As ​Technical Steering Committee of the AMP Project​ we are excited about Web Packaging as 
technology to form the basis of the web platform’s support of privacy-preserving preloading. We 
feel that introducing such an approach for loading to the web platform enables the web’s 
continued aim of providing excellent user experiences and access to content. In a landscape of 
proprietary content distribution formats locked to their owner’s platforms, Web Packaging 
enables the ability to provide web experiences consistent with users’ experience expectations 
while ensuring full control of publishers over their content through tamper-proof digital 
signatures. 
 
At the same time, we recognize that Web Packaging does allow for decentralized delivery of 
content, which, while allowing for exciting new use cases, also comes with inherent new risks. 
Thus we welcome a deep discussion of this new technology and its impact on the shape of the 
web. 

Ensuring publisher control of their content 

Context 
User’s expectations today are formed through the entirety of the apps they use on their phones. 
These expectations are independent of underlying technologies and apply to the web just like 
they do to the native apps installed on the device. For the web to stay relevant, it has to work 
towards matching the experiences provided by walled-garden native or web apps that tightly 
control UX and monetization of content presented in them, while not sacrificing what makes the 
web the greatest computing platform of all time. 
 
From the earliest days, the AMP Project aimed to enable the user experience benefits of 
content being embedded into content consumption apps while affording control of the publisher 
over their monetization (ads, paywalls, direct payments), analytics, design, branding, and 
navigation. The workshop invitation mentions multiple content embedding formats, but we want 
to note that AMP materially differs from them by not mandating or even putting a preference on 
monetization, measurement, or similar technology from any particular vendor. Similarly, AMP 
allows for implementing full website experiences within the embedded context, so that there are 
no limitations on publishers in guiding users into onward journeys outside of the embedded 

https://github.com/ampproject/meta-tsc


context. This, again, stands in deep contrast to other technologies mentioned in the workshop 
proposal. 

Web Packaging 
We are excited about Web Packaging technology because it allows AMP to maintain its model 
for privacy-preserving prefetching, and thus instant-loading, while ensuring that content can be 
rendered under the publisher’s own authority and cannot be modified by the distributing cache, 
as guaranteed by cryptographic signatures. 
 
Web Packaging puts publishers in control by ensuring that no intermediate party who 
participates in content distribution can in any way change publishers’ content. 
 
Combined with AMP’s freedom in monetization, analytics, design, branding, navigation, etc. 
Web Packaging ensures that publishers can participate in embedded content experiences 
without having to worry about losing control of their content. 
 
Additionally, we’d like to highlight that Web Packaging is an “initial delivery” method. 
Subsequent requests, such as those that are made after the package is loaded are directed to 
the respective origin and are not controlled by the party that did the initial delivery. 

Stronger Origin Control with Signed Exchanges 
Currently, deploying TLS while minimizing round trip time (RTT) requires both a CDN and an 
extension of trust (i.e. TLS private key or signing access) to every POP in the CDN. Even with 
good key management practices, every POP necessarily represents attack surface for malicious 
content alteration. In common origin-pull CDN configurations, such risk is unnecessary. With 
signed exchanges (SXG), Web Packaging can decouple integrity control from distribution to 
reduce this risk. Such decoupling can simultaneously support the high performance of wide 
distribution while retaining a minimal attack surface against integrity. Systems that already use 
offline signing with mirrors (e.g. RPM/Apt) demonstrate the value and viability of separating the 
concerns of integrity from distribution. 
 
Content management and packaging approaches like Jekyll, Hugo, Hexo, Middleman, and 
webpack (among many others) would particularly benefit from the offline signing model 
supported by SXG because they already pre-generate their assets in a trusted build process. 
This build process provides a natural integration point for offline signing. Integrating SXG into a 
content build process -- rather than relying only on TLS -- would reduce the attack surface 
against document integrity from the entire web stack (including CDN POPs) to merely the asset 
build process. 
 
Combining SXG with TLS maximizes both integrity control (via SXG) and privacy (via TLS). 
Such a model offers strictly better security -- in all respects -- than TLS alone whenever it is 
viable. 



Privacy-preserving preloading with Web Packaging 
AMP implements privacy-preserving preloading, a technique that allows content to be loaded 
before a user expresses their explicit interest to view the content and without the content 
publisher learning about the user’s potential interest. As soon as the user expresses their 
explicit interest in the content (e.g. by navigating to it) the publisher learns about the user in the 
same way the publisher would have learned about the user without preloading. 
 
AMP’s current implementation of privacy-preserving preloading is done on the application layer, 
relying on a carefully designed interplay between web components and AMP Caches. Web 
Packaging greatly simplifies this model to rely entirely on web platform capabilities. This 
simplifies AMP, but it also makes the same privacy-preserving preloading available to content 
not written in AMP. 

Vendor lock-in 
AMP was designed with open distribution of content in mind. While the publisher gets to control 
monetization, analytics, design, branding, and navigation, AMP does not provide for a method to 
control the platform that content can be shown in–just like the web doesn’t provide for a 
mechanism to control who can link to a web page. 
 
This was done to avoid publishers specializing their content for any particular company, such as 
Google, and it was successful in allowing a multitude of platforms to launch AMP integrations 
without each needing to contact every publisher to update their documents to be compatible 
with their platform. 
 
The current state of the Web Packaging spec is written in similar spirit. The publisher gets 
cryptographic-signature guaranteed integrity of their content, but they don’t get control who may 
deliver it on their behalf. ​There are proposals​ to change this which in turn address security 
issues that may arise through unintended distribution. It may well be inevitable to make such 
compromises, but the AMP Project would prefer a future of open content distribution over a 
system of per-platform opt-in. 

What if we don’t act 
We feel that Web Packaging provides for a good trade-off in making the web competitive with 
native- or webview-based implementations of similar patterns that don’t need to work within the 
web platform, while keeping the publisher in full control of their content. 
 
 
 

https://github.com/WICG/webpackage/issues/430


Failing to make the web competitive would likely result in these use cases moving away from 
the web, as has already happened with content distributions formats mentioned in the workshop 
description other than AMP. We believe this would deteriorate publisher control and increase 
platform lock-in. 
 
 
The AMP Technical Steering Committee 
 
Chris Papazian, Pinterest 
David Strauss, Pantheon 
Dima Voytenko, Google 
Malte Ubl, Google 
Paul Armstrong, Twitter 
Rudy Galfi, Google 
Saulo Santos, Microsoft 
 

https://github.com/cpapazian
https://github.com/davidstrauss
https://github.com/dvoytenko
https://github.com/cramforce
https://github.com/paularmstrong
https://github.com/rudygalfi
https://github.com/ssantosms

