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What to monitor

« Network operators connect « Network Telemetry
customers in routing tables (RFC 9232) describes how to collect data

called VPN's » fromall 3 network planes efficiently »
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Why to automate monitoring

« Customers are always
connected, when VPN's
changing, regardless due to
= Italy: TIM internet services .
inte.rruption reported Ope rat|0na| or
e e configurational reasons,
network operators are late
S to react due to missing

visibility and automation »

social platform went down?




How to organize and collaborate with data
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What does Network Anomaly Detection mean

@ Answers
v, 2 [
o 1 NEtwork Anomaly What changed and when, on which
DetECtion connectivity service, and how does it impact

é_m the customers?
/G') Focuses

For VPNs, Network Anomaly Detection constantly Provides meaningful connectivity service
monitors and detects any network or device topology impact information before customer is aware
changes, along with their associated forwarding of and support in root-cause analysis.
consequences for customers as outliers. Notifications @ Data Mesh

are sent to the Network Operation Center before the Consumes operational real-time Forwarding
customer is aware of service disruptions. It offers Plane, Control Plane and Management Plane
operational metrics for in-depth analysis, allowing to metrics and produces analytical alerts.

understand on which platform the problem originates v« Direction

. : AR
and facilitates problem resolution. From connectivity service to network platform.
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Presented in ANRW 2023

« A more detailing paper
will be submitted soon to
|EEE Transactions on
Network and Service

Management»
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ABSTRACT

We present an architecture aimed at performing Anomaly De
tection for BGRMPLS VPN services, at scale, We describe
the: challenges associated with real tme anomaly detection
in musdern, large BGRYMPLS VPN and BGP/IPv6 Segment
Routing VPN deployments, We describe an architecture re
quired to collect the necessary routing information at scale,
We discuss the various dimensions which can be used to de-
tect anomalies, and the caveats of the real world impacting
the level of difficulty of such anomaly detection and network
maodeling. We argue for ule-based anomaly detection assisted
with machine leaming based customer classification is best
suiled given the current state of the art. Finally, we review the
current IETF contributions which are required to benefit from

a fully open, standard, architecture.
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anomlics in their services in a timely fashion, while accom-
modating for scale. Around 10 thousand L3 VPNs in our
Swisscom use case. Long-lasting outages, detected by the
customer before the service provider, are detrimental to the
perception of scrvice quality, and may dramatically impact
the customer business.

The goal of the presented archilecture is o provide an
anomaly detection solution that scales while, being flexible
on the aspects: (i) the di ions that must be used
o detect anomalies are multiple; (1) VPN customers wear
dilferent profiles in terms of normal and abnormal values for
such dimensions; (iii) the amount of information collected to
produce values for such dimensions is extremely large in such
depl - around 175 the d d in our
use case; (iv) the operating costs for managing an anomaly
detection solution must be kept low; and (v) the networking
platforms providing the service may come from different
vendors and have different monitoring capabilitics,

The remainder paper is structured as follows. In section 2,
we define what is considered a network anomaly and present
the ted behind its detection. In Section 3,

INTRODUCTION
Customers subseribing to BGP/MPLS VPN services usually
come along with stringent Service Level Agreements. Con-
sequently, Service Providers must be capable of detecting
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we describe the Daisy architecture. In Section 4, we review
the ongoing IETF cfforts aimed at filling the gaps for a fully
open, standard, Anomaly Detection (AD) implementation.
And finally, in section 5, we present the first results of Daisy
deployment at Swisscom.

2 PROBLEM STATEMENT

We describe some of the 2 i wilh cusl
diversity, and a non-exhaustive list of anomalies targeted by
the base recipes from our limited proof of concept deployment
setup.

2.1 What is an Anomaly?
An anomaly is defined in this project as follows: Whatever
would let an operator frown and investigate when looking




What our motivation is

From network incidents postmortems we network operators
learn and improve so does network anomaly detection and
supervised and semi-supervised machine learning.

The more network incidents are observed, the more we can
improve. With more incidents the postmortem process
needs be automated, let's get organized first by defining
human and machine-readable metadata semantics and
annotate operational and analytical data.

Let's get further organized by exchanging standardized
labeled network incident data among network operators,
vendors and academia to collaborate on academic research.

« The community working
on Network Anomaly
Detection is probably the
only group wishing for
more network incidents »



What is a symptom and how to categorize them

Action: Which action the network node performed for a
packet in the forwarding plane, a path or adjacency in the
control plane or state or statistical changes in the

« Symptoms are

management plane. categorized in which plane
Reason: For each reason one or more actions describing why they have been ObSEFVEd,
this action was used. From drop unreachable, administered, their action, reason and

and corrupt in forwarding plane, to reachability withdraw and
adjacency teared down in control plane, to Interface down,
errors or discard in management plane.

cause »

Cause: For each reason one or more causes describes why
the action was chosen. From missing next-hop and link-layer
information in forwarding plane, to reachability withdrawn
due to peer down or path no longer redistributed.



Questions to the audience

Network Operators: Do you agree that today’s actions; traffic is dropped, path is withdrawn
and interface down, are always exposed through Network Telemetry. But reasons and
causes, dropped due to unreachable next-hop, withdrawn due to peer down, interface
down due to missing signal, are rarely exposed to telemetry would be most interesting?

Network Vendors: Is the assumption correct that a when network service process, routing
process and withdrawing a path occur, most of the time the vendor knows why it acts that
way, and could potential make this reason and cause information available?

Academia: Would it help if network operators would provide well defined labeled
operational and analytical data to enable and validate their research?

Everybody: Should these symptoms be clearly described and standardized for a common
terminology so that operators, researchers and anomaly detection systems alike understand
their meaning and learn and act accordingly?



Outliers in Anomaly Detection

Global outliers: An outlier is considered "global" if its
behavior is outside the entirety of the considered data set.

Contextual outliers: An outlier is considered "contextual" if
its behavior is within a normal (expected) range, but it would
not be expected based on some context. Context can be
defined as a function of multiple parameters, such as time,
location, etc.

Collective outliers: An outlieris considered "collective" if the
behavior of each single data point that are part of the
anomaly are within expected ranges (so they are not
anomalous, it’s either a contextual or a global sense), but the
group taking all the data points together, is.

« Collective outliers are
important because
networks are connected.
Through different planes
interconnected symptoms
from various angles can be
observed »
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Annotate Operation Data

module: ietf-symptom-semantic-metadata

+--rw symptom

+--rw id yang:uuid
e eipeion e —— * Symptoms describe what changed in the
e G SR e network for what reason and cause with
NSNS S which concern score from when to when.
+--rw tags* [key]
A AP * Tags describes in which network plane, which
e action, reason and cause was observed.
| | +——rw dropempty -
Y e oty e Pattern describes the measurement pattern
e oty over time of the time series data.
| +--:(seasonality-shift)
) [ e GmcsiSians Gy * Source describes which system observed the
|| trend — outlier. A human or a network anomaly
R i il detection system.

+--rw (source-type)

| +-——1: (human)

| | +--rw human empty

| +--: (algorithm)

| +--rw algorithm empty

+--rw name? string
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Annotate Analytical Data

module: ietf-incident-semantic-metadata

+--rw incident

I e Danguid * Incidents has a unique ID and description with
Tresrerioiine vengiaierandroine a start and end time and a concern score.
+--rw symptoms* [] . .
| +--zv oumpton ) * Symptoms describe what changed in the
t-——rw 1 yang:uul H
| +--rw event-id yangiuuid network for what reason and cause with
<snip> which concern score from when to when.

T——rw Source

=ev (erpe / * Source describes which system reported the

+--: (human) o
|| +--rw human empty outlier. A human or a network anomaly
| +--:(algorithm) ;
| e oy cmo detection system.
+--rw name? string
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Semantic Metadata Annotation for Network Anomaly Detection

* Do you realize the benefit of having standardized semantic metadata
annotation for Network Anomaly Detection and how it helps network
operators, vendor and academia to collaborate?

e -> What are your thoughts and comments?

* This document looks for a community and working group who have interest
in Network Anomaly Detection, bridging network and data engineering,
operator, vendors and academia, by writing the semantics and ontology of
network symptoms for operational and analytical data.

* This work will unveil what is missing in Network Telemetry data and provide
input for other documents to enable a more detailed and holistic view from
networks.

Publishes and subscribes
YANG push with semantic reference

!
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