Developer support with
code-generation

Dave Thaler, moderator



Several papers mentioned code generation

* Marcello Lioy, Dave Thaler, “Summary of AllSeen Alliance Work
Relevant to Semantic Interoperability”

* Bryant Eastham, “Interoperability and the OpenDOF Project”

* Matthias Kovatsch, “Semantic Interoperability Requires Self-
describing Interaction Models”

e Kerry Lynn, “Modeling RESTful APIs with JSON Hyper-Schema”



Outline

* Use cases

* Data model requirements to enable codegen of basic functionality
e Additional things needed for some use cases

» Additional things useful for code readability/maintenance
 Various additional issues

* Code generator implementation decisions



Some code generation use cases

Given a formal data model:

1.

Generate client-side library for talking to a Thing

. Generate stubs for implementing a Thing

2
3. Generate tests for compliance
4,
5

Generate fuzz tests
... others



Some requirements for data models /
metadata to facilitate code generation (1/2)

* Generally required for basic functionality

Data model identifier

Data model version (whether explicit or implied)

Instance identifiers

Property/event/method names

Data types of their values (which might be links to other resources)
* Allowed operations (create? read? update? delete? subscribe?)

* Security requirements



Some requirements for data models /
metadata to facilitate code generation (2/2)

* Needed for some use cases
* Value constraints (e.g., ranges, relationships between values)

Validity lifetime of value (e.g., cachable? TTL? subscribe to actual value changes or
just value-has-changed events?)

End-user description strings (e.g., label for each property, enum value, etc.)
Units
Default values
Display hints
* Error messages
* Good for code readability/maintenance but not strictly required:

* Named types
e Developer comments



Various additional issues

How is instance discovery done, if multiple ways are allowed?
Strong type checking on client side?
Complex constraints (e.g., values that depend on other values)

|H

How handle “optional” functionality on server side?

Al

|II

How handle “optional” functionality on client side — discovery time?
capability negotiation? handle “not supported” failures?
* Also includes issues of backwards compat & deprecated/obsolete func.

6. How to handle client side control loop, if any: open loop? closed
loop? up to app?



Code generator implementation decisions

* |s code generation done at development time or runtime?
* Does code generator help retrieve data model or require it done a priori?

e Simplicity vs complexity, how let a simple app do simple things without
precluding a complex app from doing complex things

* Code input formats:
* Multiple data model languages or just one?

e Code output formats:
* Multiple programming languages?
* Multiple OS platforms?
* Multiple serialization formats?
* Multiple transport protocols?



