electricimp

Electric Imp has sold over half a million 'Imps', all remotely upgradable and embedded
in a variety of consumer and industrial devices.

An Imp consists of a microcontroller-grade processor and wifi radio. The processor
hosts a virtual machine for the Squirrel scripting language, and arranges secure
connectivity back to a cloud service. The cloud service runs an 'Agent' for the Imp --
which is a further Squirrel virtual machine that can communicate with the Imp and the
Internet in general. Having an Agent allows the code running on the Imp to be suitably
limited in scope so that it runs comfortably on a microcontroller.

The customer-provided code which runs in the Imp and Agent VM is instantly
upgradable over-the-air. Because the VMs provide memory safety, bugs in the code
they run do not prevent future changes. The platform further reports errors to the Agent,
so local access is not needed during the software development process.

Underneath this we perform over-the-air, secure, crash-safe upgrades of the platform
firmware running on the Imp. We produce and deploy these upgrades, meaning device
manufacturers do not need security expertise or ongoing engineering effort to keep their
devices secure and up-to-date over their lifespan. This aligns well with the economic
interests and skills of device manufacturers. It also means our efforts to maintain Imp
security are efficiently amortised across all devices, irrespective of application, market
or device cost.

We'd like to see, initially, a common language for talking about the properties of
embedded upgrade systems such as cryptographic security, device ownership, device
separation, vulnerability reporting and management, and device lifespan.

Platform Upgrades

The first Imps, the imp001 and imp002, both have a STM32F205 microcontroller with
1MB of flash. This flash is split into ‘preboot’, ‘bootrom’, ‘improm’ and ‘bytecode’
sections, approximately 16KB, 192KB, 640KB and 128KB in size respectively.



The preboot is immutable and merely jumps to the improm if it is valid or to the bootrom
otherwise. The bootrom does not have any functionality save the ability to upgrade the
improm over the air. The improm contains the bytecode interpreter, hardware APIs, a
TLS stack, etc. as well as the ability to upgrade the bootrom over the air.

Upgrade images are encrypted with AES (with a per-Imp-model key) and signed with
RSA4096-PSS-SHA256. We find a 4096-bit public RSA operation to be an acceptable
computational cost at ~44ms to ~180ms across our hardware models when considered
alongside 1-3 second flash erase times that an upgrade also involves. Upgrade images
are delivered over HTTP for local cacheability and bootrom size reasons; this
unfortunately means our upgrade process doesn’t keep some information private such
as which devices are running which versions.

Upgrades are triggered by an upgrade request or demand delivered over the
TLS-secured link between the improm and our cloud service. If the server requires a
improm upgrade, the improm invalidates itself in flash, and then performs a hardware
reset. The bootrom then runs and upgrades the improm. The very last operation
performed in an upgrade is marking the new image as valid, so any failure up to that
point does not leave an inconsistent state.

We control when a device receives a particular upgrade, but it typically involves
discussion with the device manufacturer. The author of the bytecode running on the
device can provide code that chooses to defer upgrade requests (but not demands) to a
more suitable time. This capability was added for a device used only during live sporting
events -- it is crucial that an upgrade is never performed during such an event.

Some devices are battery powered and this brings its own problems. We cannot
upgrade devices with insufficient voltage to erase and rewrite their flash, so we check
first and avoid doing so. Making a network connection requires a similar (slightly lower)
voltage, so unupgradable devices soon become unable to connect and will have their
batteries replaced or recharged.

Platform hardware requirements

Our least powerful hardware (as mentioned above) has 1MB of flash, 128KB of SRAM
and a Cortex-M3 core running at 120MHz. Wifi is provided by a separate chip that has a
further Cortex-M3; this code is provided by the vendor and loaded into the wifi device on
demand. The bootrom and improm each have their own copy of this binary firmware
blob, so these are included in our platform upgrade image.



Later Imp models have a requirement for an external SPI flash to offer more user
bytecode storage, and accommodate larger platform and wifi firmware binaries.

We do not require a MMU/MPU, but in practice all of our hardware platforms have an
MPU and we use this to enforce safety and security policies like WAX.

User Code

User code is written in Squirrel, compiled by the cloud service and delivered as
bytecode over TLS to the improm. This is written to and interpreted from flash. Bytecode
updates are under the control of the developer or device manufacturer; we are not
involved operationally.

The Squirrel interpreter is a stack-based, memory-safe, garbage-collected virtual
machine. We have not made major modifications to it, save for making the bytecode
format more compact.

Notes: common requirements for loT upgrade

I'd like to see a basic set of requirements for loT device upgrade systems. I’'m not
confident that the field is coherent and general enough to get to a position like we have
with network transport security, where one can say “just use TLS.” I'd be happy if there
were some document (perhaps in the format of RFC6888) which covered things like the
following:

Security

These ideas are aimed at alleviating common security failure modes of embedded
upgrade systems.

- Strong, modern cryptography to provide upgrade authenticity.

- No device contains secrets usable to compromise another (i.e., avoiding ‘class
breaks’).

- Authenticity covers both binaries and all metadata used in processing an
upgrade.

- Upgrade processed in one pass if read from untrusted media (i.e. avoiding
TOCTOU bugs).



Device ownership and lifespan

Devices should be updated by an entity which has an economic interest in keeping
them updated and secure, and for a suitable period. Customers may demand escrow
agreements in the event that this entity ceases to exist, as is common in commercial
software sales.

Vulnerability reporting and management

This could merely be a referential restatement of 1ISO29147.

Author: Joseph Birr-Pixton <joseph@electricimp.com>

More information

https://electricimp.com/docs/hardware/imp/modules/ - Hardware comparison.
https://electricimp.com/docs/hardware/imp/datasheets/ - Datasheets.



mailto:joseph@electricimp.com
https://electricimp.com/docs/hardware/imp/modules/
https://electricimp.com/docs/hardware/imp/datasheets/

