How careful should we be when implementing cryptography for
software update mechanisms in the IoT?
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The ability to update connected devices in the field could be a useful mechanism to perform up-
grades of the devices, to circumvent any security problem or correct any bug. Unfortunately, an
attacker could use that update to replace the current firmware by a compromised one and misuse the
connected device. For example, a smart door locks firmware could be replaced by one that embeds
a Trojan and would give access to an attacker. One way of handling such essential security issues is
through the use of cryptographic tools. In this paper, we discuss about the importance of looking at
the way cryptographic algorithms are implemented for software update mechanisms in the IoT.

During the software update of an IoT device there are two fundamental security issues: who is in-
stalling what. For the who, we would like to make sure that the software to be installed comes from
a legitimate issuer. For the what, we would like to make sure that the software to be installed is the
correct one. In addition, the issuer might want to protect the confidentiality of the software (e.g. for
intellectual property protection issues) and make sure that it is installed on a legitimate device (i.e.
not a clone or a fake). In practice, most of these issues can be handled using cryptographic techniques.

For example, to ensure that the software comes from a reliable source, the IoT device might authen-
ticate the issuer. Unfortunately, there are products on the market that do not implement this rather
basic feature [I]. One way to answer this is to require the storage of a server public key into the devices
in order to verify signed software updates. This mechanism ensures that only officially signed updates
are applied to devices but it does not authenticate them to the server. It means that a firmware
update could be done on an untrusted device (e.g. a clone). One way to handle such an issue could be
by covering the confidentiality issue using symmetric encryption. In that case, the untrusted device
would then have to know the secret key used to encrypt the software to install it. However, it does not
allow an attacker to update a malicious software as long as he does not know the server’s signature
private key. On the other hand, if a bug is discovered in a given firmware version whose signature is
known to the attacker, then he could re-update it after each ‘real’ update to continue to exploit this
known vulnerability. This suggests that perfect forward secrecy (PFS) could be a valuable property
for software updates.

Concerning the device authentication, if the network allows uplinks, it could be wise to set up a mutual
authentication to ensure that the firmware (even encrypted) is not sent to an untrusted device. The
best option would be to set up a mutual authenticated key exchange to achieve the PFS property.
Unfortunately, the disadvantage of using asymmetric cryptography for authentication is that such
calculations are computationally intensive. Indeed, for low resource devices (e.g. battery powered de-
vices) a cryptographic operation with a small footprint and a limited amount of energy consumption
is important. Unless the device owns a hardware accelerator for elliptic curve cryptography (ECC),



which is not necessarily the case for low-cost devices, this does not seem realistic because of limited
performance. Another alternative may be to use a couponing scheme signature [2]. It is a space-time
tradeoff which considerably reduces computations overhead for the signatory. Unfortunately, this kind
of algorithm is not easy to implement in practice due to the coupon management complexity. Plus, it
only lightens the signature computation, not the verification.

A lightweight mutual authentication protocol based on symmetric cryptography could also be consid-
ered but would require shared secrets between the device and the server.

Regarding the issue of software integrity, if the server authenticates itself to the device by signing the
encrypted firmware, then it is already taken into consideration. Otherwise, it could be done using
an authenticated encryption with associated data (AEAD) or append a Hash of the plaintext before
encryption.

In all the above cases, cryptography has to be embedded into the IoT device which shall have to store
and handle secret/sensitive cryptographic keys at some point. The security of those keys within the
device has to be guaranteed throughout the life cycle of the device, i.e. from the manufacturing of
the device through the personalization stage up to its end of life. In the meantime, the device will be
in the field and since it can be a hostile environment (i.e. physically accessible to hackers), physical
attacks must be taken in account. We can distinguish three classes of physical attacks.

Side channel attacks (SCA) allow to recover the encryption key by using information leakages
(e.g. computation time, power consumption, ...) during cryptographic computations [3].

Fault attacks aim at introducing a fault (e.g. clock glitches, Electromagnetic pulses, laser/light
flashes, ...) during cryptographic computations and cause errors which can be exploited to
recover the involved secret [4].

Invasive attacks refer to attacks where the physical properties of the chip are irreversibly
modified (e.g. microprobing) [5].

SCA are easy to use and do not require much equipment. Fault attacks are a little more complicated
to set up but are very powerful and may allow an attacker to break an unprotected system faster
than any other SCA. Finally, invasive attacks are the most powerful attack class, but also the most
expensive ones. Although the required equipment sounds expensive, the second-hand market makes
all attack equipment affordable making such attack scenarios relevant even for low cost IoT devices.

In case of software updates, the firmware may be sent encrypted so authentic devices would have to
perform cryptographic computations to decrypt it. If the key can be recovered by performing physi-
cal attacks, then an attacker could get the plain firmware and try to reverse-engineer it to find new
security failures. Furthermore, if the same encryption key is shared between the server and several
devices for “easy” key management [6], then an old vulnerable software version update could be made
on several clone/fake devices (e.g. to create botnets for DDoS). To mitigate such a risk, either the
encryption key is diversified per device (meaning that the server must manage and store as many
encryption keys as there are devices in the field) or the implementation of the cryptograhy used must
embed countermeasures against physical attacks.

Barriers to guard against these kinds of attacks are the classical IoT requirements of high performance,
low power consumption and low foot print. Implementing an AES on IoT devices is conceivable and
fast software implementations are available for 8-bit [7] and 16-bit [§] microcontrollers. Although these
implementations are resistant against first-order SCA, it is still not enough against some sophisticated
attacks. Existing countermeasures generally used to protect from high-order differential attacks are
not feasible for IoT devices due to the overhead in terms of energy and memory consumption, time
execution and code size. When combined with cost and budget constraints, these limitations make the
design of security measures for the IoT quite challenging. These remarks do not only concern software
implementations and are also valid for hardware ones. For example, the design of an efficient and



secure AES hardware implementation that incorporates many countermeasures against side-channel
attacks would have a high area requirement, which results in high costs [I1]. Thus, some cheap solu-
tions sometimes make use of weak homemade cryptographic algorithms (e.g. tweaked XOR cipher) [1].

One answer to such a problem could be the use of lightweight cryptography (LWC). Several algo-
rithms have been proposed in order to set new encryption standards for the IoT [9]. Some of them
(e.g. PRESENT [I0]) have been well studied about their security and are ready to use in practice.
Although LWC algorithms are quite appropriated to constraint devices, there is still the issue of the
countermeasures’ overhead associated to physical attacks. Our work aims at building new lightweight
ciphers intrinsically resistant to physical attacks, in such a way that there would be no need of coun-
termeasures implementations because its internal structure would protect against such attacks. We
believe that it could promote security integration for the IoT due to better performance and lower
area requirement for the same security level.

The second aim would be to propose a secure life cycle management (including software updates) for
ToT devices implementing LWC.
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