Software and Firmware Updates with the OMA
LWM2M Protocol

Hannes Tschofenig*
!ARM Limited, Email: hannes.tschofenig@arm.com

I. ABSTRACT

The Lightweight Machine-to-Machine (LWM2M) [2] protocol has been developed by the Open Mobile Alliance (OMA)
to provide a number of device management functions, including software and firmware updates. With mbed Client and mbed
Connector, ARM has implemented LWM2M and offers it to developers. This position paper describes what functionality has
been standardized in LWM2M for software and firmware updates and what open issues exist.

II. LWM2M OVERVIEW

The high-level architecture of LWM2M is shown in Figure |I| where the LWM2M client, running on an IoT device, interacts
with an LWM2M server. LWM2M v1.0 supports CoAP over both UDP and SMS. The protocol assumes the use of DTLS for
communication security and offers various RESTful APIs (interfaces) that allow communicating structured data. The data is
organized in the form of objects that contain resources. The detailed structure of the data model has been the subject of a
separate position paper published in the IoT Semantic Interoperability Workshop 2016; see {citeipso-iotsi-paper.

i
]
E M2M App
i
LWM2M Server
Interfaces Stack
Bootstrapping - - Efficient Payload
Registration - - CoAP Protocol
Object/Resource Access - - DTLS Security
Reporting - - UDP or SMS Bearer
Y

300

Objects

M2M Device
Fig. 1. LWM2M Architecture.

A number of objects have been standardized already to allow the exchange of data between an IoT device and the server-side
infrastructure. This communication is bi-directional and allows the server to obtain sensor readings, control actuators and so
on. The same object model is used for the interactions. A full list of the already standardized objects can be found at a
registry maintained by the OMA [3]. This registry contains a firmware object as well as a software management object. The
functionality of the two is described in the subsections below.

A. Firmware Object
The object definition of the firmware object can be found at [4]. It includes a number of resources, namely

1) The firmware package itself or a URI pointing to it. The idea of using a URI is to allow a server to instruct a client to
download the firmware from another source.

2) Various resources to expose the protocol interaction and the result of the firmware update operation. For example, the
Update Result resource allows an LWM2M client to expose information about the reason for a failed software update,
or that the update has been performed successfully.

POSITION PAPER FOR THE 'INTERNET OF THINGS SOFTWARE UPDATE WORKSHOP (I0TSU)’ [1], 13th AND 14" JUNE 2016, DUBLIN, IRELAND. The
content of this document describes the views of the author.

The process for providing a firmware to a device is supposed to happen in two stages: the download of the firmware image,
and then the execution of the update. An update can only be executed when the device has successfully downloaded the
firmware image (and presumably took the necessary verification steps) and has transitioned into the "Downloaded’ state.

The object definition indicates that only a single firmware object can be present on a device. Furthermore, there is no
meta-data in the object definition about the content of the firmware package.

B. Software Management Object

Since the firmware object was seen as too basic, an extended version - called software management object - was developed.
The object definition of the software management object is not included in the main LWM2M specification, but has instead
been published as a separate specification [5]. It defines two objects: the Software Component object (with object ID 14) and
the Software Management object (with object ID 9).

The added functionality provided by these two objects aims to focus on devices where multiple software packages are
installed. Similarly to the firmware update procedure, the server can push a software package or a URI to a software package. If
the client needs authentication to download the software package over a URI, the server may also provision a username/password
to the client. Unlike the firmware update procedure, in software management it is also necessary to activate software after it
has been installed. Software management also supports deactivating and removing a software package.

The Software Management object also defines basic meta-data about the name and the version of the package and contains
one or more links to Software Component objects. Figure [2] illustrates the relationship between the two objects.

Software Component Link

Software Management

PkgName
PkgVersion Component Identity
Package Component Pack

Package URI Component Version

- s Software Com ponent

Install Activate
Checkpoint Deactivate
Uninstall Activation State
Update State

U pdate Supported O bjeds.

U pdate Result

Adivate

Deactivate

Adiivation State

Package Settings

Usemame
Passvord

Status Reason

Software Compenent tree length

Fig. 2. Software Management.

As shown, the software management object may contain of one or more software components. In addition to the multiple
software components a device may also have multiple software management objects.

III. WHAT ARE WE TRYING TO STANDARDIZE?

The OMA work on software and firmware updates, as two independent solutions, hints to the fuzzy definition of the Internet
of Things. IoT devices, in ARM jargon, may be devices that run Cortex A class processors and are therefore able to run general
purpose operating systems, such as Arch Linux, since they are equipped with a memory management unit, use more powerful
processors, and also have more RAM and flash memory. Devices with such operating systems have, for a long time, been using
sophisticated software update mechanisms (such as Pacman). Software has also been provided by different developers, and
thanks to the isolation techniques offered by the hardware and modern operating systems, a failure in one software typically
does not impact other software components (from a security point of view). Often software update mechanisms on these devices
allow updates to be obtained from various sources.

QUESTION: Do we need additional software update standards for these A-class devices?

To make the question more complicated, many A-class type processors offer a hardware security features called Trusted
Execution Environments (TEEs) [6]. These TEEs provide a separation between the full blown, general purpose operating system
and a real-time operating system. The two sides are often referred to as “normal world” and “secure world”. The purpose of
the separation is to place security-sensitive components in the smaller, better audited, and more tightly controlled real-time
operating system - and to use hardware features to control the transition between the two worlds. Software/firmware updates
for the secure world are often very different, technically and operationally, from the update mechanism used in the normal
world.

QUESTION: Is there a need for a software/firmware update mechanism for the secure world on A-class-like devices?

In the move from the Cortex A-class devices to the more constrained Cortex M-class devices, a different software development
practice has been established. While software has gotten more and more complex (with the desire to connect to various Internet
services), only a single firmware image is uploaded to the M-class IoT device. This image typically contains software libraries

from various sources, and may even contain binary images that have been provided by silicon manufacturers. This means that
in some cases the developer may not have access to the full source code, but instead has to link a binary to his or her codeﬂ

While some companies have been experimenting with Java Virtual Machines - or similar sandboxing techniques - to allow
downloading software components from different sources, these efforts typically challenge the very nature of the M-class
devices. These devices are supposed to be cheap, purpose-built, energy efficient and equipped with limited resources (RAM,
flash, etc).

QUESTION: What are the minimum requirements for firmware updates for such M-class devices?

Security has been an important consideration for all Internet connected devices and TEEs were introduced to A-class devices
(with ARM TrustZone) many years ago. In November 2015, ARM made a technology launch of TrustZone for v8-M [8] and
thereby completed the v8 architecture for application (A), real-time (R), and microcontroller (M) devices. It remains to be seen
whether the developer experience for devices using TrustZone for v8-M and v8-A will be similar or very different. In addition
to TrustZone other hardware security features are offered by other vendors, such as the support of algorithms in hardware
(hash functions, symmetric algorithms, as well as asymmetric crypto) and the ability to generate and to store keying material
in a protected area.

QUESTION: How do hardware security features for embedded devices impact firmware update mechanisms? This question
is largely unanswered.

IV. OPEN ISSUES WITH LWM2M

The introduction to LWM2M mentioned functionality that has not been standardized, and there may be good reasons for
leaving certain functionality either out of scope or subject to proprietary implementations. The following subsections highlight
a few of the identified open issues.

A. Choice of Transport and Fragmentation

Firmware updates may potentially be large (over 100 KiB for a Cortex M-based device). Although the transport of software
and firmware updates has been standardized with LWM2M, the use of CoAP - which runs on top of UDP - quickly leads to
problems. First, UDP has a maximum size limit of about 64 KiB. Second, transmitting UDP messages that are larger than the
path MTU size leads to fragmentation of these messages at the lower layers, typically IP. It may also lead to fragmentation at
the adaptation layer.

It turns out that CoAP over TCP, as well as the blockwise transfer developed for CoAP more recently in the IETF CoRE
working group, can help mitigate these problems. Unfortunately, the LWM2M v1.0 does not support these newer CoAP
extensions. As a consequence, software/firmware updates with file sizes larger than 64 KiB are not supported. Furthermore,
the performance of any software/firmware update using CoAP alone (without utilizing these extensions) over low power radio
technologies (such as IEEE 802.16.4, or the recently developed low power wide area networks) will be significantly degraded
due to the interplay between packet loss and the fragmentation behavior at the IP or adaptation layer.

When firmware images are distributed to a large number of devices, the caching capabilities of CoAP and other protocols,
including multicast support, may turn out to be useful - but they are not discussed in the LWM2M specification.

Ideally, a firmware distribution mechanism should offer flexible transport to allow it to be used over a number of different
technologies. Some of these radio technologies are lossy, requiring re-transmission of a subset of the transmitted data. Efficiency
of the firmware distribution is important, because a firmware update of a device running on a coin-cell battery can easily drain
half of the battery capacity.

B. Meta-Data

The LWM2M firmware object contains no meta-data about the firmware image itself, and the Software Management
object only contains a minimal amount of meta-data. Quite naturally, the question arises what type of meta-data needs to
be standardized as part of the data model. For example, the firmware object is only available as a single instance, and this
raises the question about the possible implications for devices that have multiple microcontrollers, each of which will need
an independent update. While this questions appears to be a hardware/software implementation design detail it does, in fact,
have an impact on the data model. Would it be useful to capture the details of the internals of an IoT device to be able to
communicate which microcontroller needs to be updated, or is this a detail only the hardware developer needs to care about?

Firmware images come in different formats - as Portable Executable (PE) and Executable and Linking Format (ELF) - they
may be compressed or come in form of diffs, they may consist of a single file or combined into multiple files. While it is
certainly helpful to indicate the content type of the payloads being communicated, is it useful for developers to settle on one
or a few popular formats and compression techniques?

' An example of this approach can be seen with the Bluetooth Low Energy (BLE) microcontrollers offered by Nordic Semiconductor, such as the Nordic
nRF51-DK [7]. Nordic thereby offers the BLE protocol stacks as so-called SoftDevices for download. SoftDevices are pre-compiled, pre-linked binary files,
which subsequently need to be linked to the actual application code (such as a BLE peripheral providing the features of a heart-rate monitor.)

C. Application Layer Security

LWM2M offers protecting the transmission of software and firmware updates via DTLS, and communication layer security is
definitely a viable option for protecting these sensitive payloads in flight, as well as to authenticate and authorize the endpoints.
When firmware images are cached in other locations (for example, distributed to other servers, cached by proxies, or used in
a store-and-forward fashion), it may be necessary to offer application layer security protection (e.g., message authentication
codes, digital signatures, and - potentially - confidentiality protection) either as a replacement for communication security or
in addition. Regarding serialization formats, a number of choices do exist already, such as ASN.1/CMS, JSON/JOSE, and
CBOR/COSE. While they are all fairly similar in functionality, there are still subtle differences due to their histories. What
technique is most favored by industry players?

Since all these mechanisms are very flexible, different types of credentials are supported (e.g., symmetric keys, raw public
keys and X.509 certs), with a variety of different cryptographic algorithms. Is there some scope to increase interoperability and
at the same time keep the code size as well as memory footprint at an acceptable level? To verify these protected payloads (and
also for the use of communication security) the device needs to be provisioned with trust anchors, or other keying material
that allow verification. These types of credentials may be used to force a certain deployment choice.

V. SUMMARY

This document starts with an overview of the functionality provided by LWM2M in Section [IIl Section [III| then raises the
question about where additional standardization work is needed. The answer will depend on the type of IoT device being dealt
with and the level of interoperability the community desires. Finally, a couple of open issues are identified in the context of
the LWM2M firmware/software update mechanism.

By reaching out to the wider Internet community we hope to get more input on the currently deployed software/firmware
update procedures. The most important building blocks and the best current practices should be standardized. These could
serve as a valuable toolbox for developers trying to bring IoT devices to the market faster.

Besides the more technical aspects raised in the write-up above, there have been various concerns expressed by the Federal
Trade Commission (FTC) [9] as well as by the Article 29 Working Party of the European Commission [10]. The concerns
range from how end users should grant permissions for software updates (while on the other hand updating software as quickly
as possible) to questions like *Should modern refrigerators have a shelf-life, much like the food contained within?” [11].
While these questions are important and need to be answered by the wider community, the author believes that the IOTSU
workshop [1] is less likely to make progress on answering these questions.

VI. ACKNOWLEDGMENTS

p—t

would like to thank Irit Arkin for her technical review of this paper.

REFERENCES

[1] TAB, “Internet of Things Software Update Workshop (IoTSU),” Jun. 2016. [Online]. Available: https://down.dsg.cs.tcd.ie/iotsu/
[2] Open Mobile Alliance, “Lightweight Machine-to-Machine Technical Specification v1.0, Candidate Enabler,” Dec. 2015. [Online]. Available:
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/oma- lightweightm2m-v1-0
, “OMNA Lightweight M2M (LWM2M) Object & Resource Registry,” Jun. 2016. [Online]. Available: http://technical.openmobilealliance.
org/Technical/technical-information/omna/lightweight-m2m-lwm?2m-object-registry
, “Firmware Object - XML Definition,” Jun. 2016. [Online]. Available: http://technical.openmobilealliance.org/tech/profiles/LWM2M _Firmware _
Update-v1_0.xml
[5] ——, “Lightweight M2M - Software Management Object,” Dec. 2015. [Online]. Available: http://member.openmobilealliance.org/ftp/Public_documents/
DM/LightweightM2M/Permanent_documents/OMA-TS-LWM2M_SwMgmt-V1_0-20151201-C.zip
[6] Wikipedia, “Trusted execution environment,” Jun. 2016. [Online]. Available: https://en.wikipedia.org/wiki/Trusted_execution_environment
[71 Nordic Semiconductor, “nRF51 DK,” Jun. 2016. [Online]. Available: https://www.nordicsemi.com/eng/Products/nRF51-DK
[8] ARM, “TrustZone,” Jun. 2016. [Online]. Available: http://www.arm.com/products/processors/technologies/trustzone/
[9] FTC Staff Report, “Internet of Things: Privacy & Security in a Connected World,” Jan. 2015. [Online]. Available: https://www.ttc.gov/system/files/
documents/reports/federal-trade-commission-staff-report-november-2013- workshop-entitled- internet- things- privacy/150127iotrpt.pdf
[10] Article 29 Working Party, “Opinion 8/2014 on the on Recent Developments on the Internet of Things,” Sep. 2014. [Online]. Available:
http://ec.europa.eu/justice/data- protection/article- 29/documentation/opinion-recommendation/files/2014/wp223_en.pdf
[11] Ashkan Soltani, “Whats the security shelf-life of IoT?” Feb. 2015. [Online]. Available: https://www.ftc.gov/news-events/blogs/techftc/2015/02/
whats-security-shelf-life-iot

(3]
(4]

https://down.dsg.cs.tcd.ie/iotsu/
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/oma-lightweightm2m-v1-0
http://technical.openmobilealliance.org/Technical/technical-information/omna/lightweight-m2m-lwm2m-object-registry
http://technical.openmobilealliance.org/Technical/technical-information/omna/lightweight-m2m-lwm2m-object-registry
http://technical.openmobilealliance.org/tech/profiles/LWM2M_Firmware_Update-v1_0.xml
http://technical.openmobilealliance.org/tech/profiles/LWM2M_Firmware_Update-v1_0.xml
http://member.openmobilealliance.org/ftp/Public_documents/DM/LightweightM2M/Permanent_documents/OMA-TS-LWM2M_SwMgmt-V1_0-20151201-C.zip
http://member.openmobilealliance.org/ftp/Public_documents/DM/LightweightM2M/Permanent_documents/OMA-TS-LWM2M_SwMgmt-V1_0-20151201-C.zip
https://en.wikipedia.org/wiki/Trusted_execution_environment
https://www.nordicsemi.com/eng/Products/nRF51-DK
http://www.arm.com/products/processors/technologies/trustzone/
https://www.ftc.gov/system/files/documents/reports/federal-trade-commission-staff-report-november-2013-workshop-entitled-internet-things-privacy/150127iotrpt.pdf
https://www.ftc.gov/system/files/documents/reports/federal-trade-commission-staff-report-november-2013-workshop-entitled-internet-things-privacy/150127iotrpt.pdf
http://ec.europa.eu/justice/data-protection/article-29/documentation/opinion-recommendation/files/2014/wp223_en.pdf
https://www.ftc.gov/news-events/blogs/techftc/2015/02/whats-security-shelf-life-iot
https://www.ftc.gov/news-events/blogs/techftc/2015/02/whats-security-shelf-life-iot

	Abstract
	LWM2M Overview
	Firmware Object
	Software Management Object

	What are we trying to standardize?
	Open Issues with LWM2M
	Choice of Transport and Fragmentation
	Meta-Data
	Application Layer Security

	Summary
	Acknowledgments
	References

