
IoTSU	Workshop	2016	 1	

Toward	A	Common	Modeling	Standard	
for	Software	Update	and	IoT	Objects	
BY	NED	SMITH	(ned.smith@intel.com)	

Abstract	
IoT	object	models	(e.g.	IPSOi,	LWM2Mii,	OCFiii,	Alljoyniv)	often	apply	information	
modeling	techniques	that	enrich	model	definition	semantics,	enable	syntax	checking,	
code	generation	and	automated	mapping	between	data	modeling	languages	and	data	
serialization	formats.	These	conventions	for	object	modeling	facilitate	interoperability	
and	automation	and	are	desirable	properties	for	software	update	infrastructure.	
Efficiencies	in	system	design,	complexity	and	cost	can	be	improved	by	relating	them	
under	a	common	modeling	approach	for	constrained	environment	devices.	Security	and	
interoperability	benefits	are	also	realized.		

1. Terminology	
Information	modelv in software	engineering is	a	representation	of	concepts	and	the	
relationships,	constraints,	rules,	and operations to	specify data	semantics for	a	chosen	
domain	of	discourse.	Typically	it	specifies	relations	between	kinds	of	things,	but	may	
also	include	relations	with	individual	things.	It	can	provide	sharable,	stable,	and	
organized	structure	of	information	requirements	or	knowledge	for	the	domain	context.	
Data	modelingvi in software	engineering is	the	process	of	creating	a data	model for	
an information	system by	applying	formal	data	modeling	techniques.	
Data	modeling	languagevii	is	a	modeling	language	for	describing	general	text	and	
binary	data	in	a	standard	way.	A	DFDL	model	or	schema	allows	any	text	or	binary	data	
to	be	read	(or	"parsed")	from	its	native	format	and	to	be	presented	as	an	instance	of	
an	information	set.	Information	set	is	a	logical	representation	of	the	data	contents,	
independent	of	the	physical	format.	

Serializationviii is	the	process	of	translating data	structures or object state	into	a	format	
that	can	be	stored	(for	example,	in	a file or	memory buffer,	or	transmitted	across	
a network connection	link)	and	reconstructed	later	in	the	same	or	another	computer	
environment. When	the	resulting	series	of	bits	is	reread	according	to	the	serialization	
format,	it	can	be	used	to	create	a	semantically	identical	clone	of	the	original	object.	For	
many	complex	objects,	such	as	those	that	make	extensive	use	of references,	this	process	
is	not	straightforward.	

	



IoTSU	Workshop	2016	 2	

2. IoT	Object	Modeling	
Object	modeling	serves	an	important	role	in	IoT	systems	by	capturing	semantic	and	
syntactic	constraints	in	an	abstract	representation	so	that	IoT	systems	are	flexibility,	
interoperable,	reliable	and	secure.	Object	modeling	can	be	decomposed	into	4	layers	
having	an	information	model,	data	model,	data	model	serialization	and	security.	For	
example,	a	bridge	between	dissimilar	IoT	networks	may	rely	on	information	and	data	
models	to	ensure	object	syntax	and	semantics	are	correctly	translated.		

The	left	side	of	figure-1	shows	a	4-layer	IoT	object	model.		

Information	Model	(IM)	

An	Information	Model	captures	object	semantics.	There	are	many	IM	languages	(IML),	
such	as	UML,	OWL	or	RDF.	IM	languages	facilitate	automation	that	helps	both	human	
and	machine	richly	describe	and	process	model	semantics.	IM	expressions	captured	
using	an	IML	are	more	easily	mapped	from	one	IML	representation	to	another	thereby	
facilitating	interoperability	across	IoT	networks.	It	also	facilitates	translation	into	a	data	
model.		

Data	Model	(DM)	

The	Data	Model	(DM)	defines	data	syntax.	DM	schemas	marry	IM	semantics	with	DM	
syntax	enabling	automated	object	syntax	checking	and	code	generation.	Objects	can	be	
verified	according	to	the	DM	schema	at	critical	points	in	object	lifecycle.	For	example,	
syntax	checks	at	object	instantiation	and	prior	to	or	following	serialization	ensures	
object	processors	do	not	parse	maligned	structures	that	may	produce	undefined	
behavior.	There	are	many	DM	languages	to	chose	from,	for	example,	JSON	schema,	XML	
schema,	RAMLix	–	(this	list	is	not	exhaustive).		
Objects	expressed	using	a	DM	improve	interoperability	between	dissimilar	IoT	
networks	when	connected	via	an	object	translation	bridge.	Object	translation	tools	are	
more	easily	implemented.	
	



IoTSU	Workshop	2016	 3	

	
Figure	1	–	Comparison	of	IoT	object	modeling	techniques	with	IoT	system	construction	
techniques.	Secure	system	update	is	a	common	element.	

Object	Serialization	Method	(OSM)	and	Object	Interaction	Protocol	(OIP)	

The	Object	Serialization	Method	(OSM)	specifies	how	objects	appear	when	converted	to	
wire	formatting.	Objects	contain	both	data	values	and	metadata.	There	are	many	
serialization	formats;	ASN.1x,	JSONxi,	CBORxii,	Base64xiii,	XMLxiv	just	to	name	a	few.	

Object	Interaction	Protocol	(OIP)	specifies	object	interfaces	and	interaction	semantics	
that	ensure	objects	can	respond	to	and	effect	environmental	changes	in	a	controlled	
way.	

Secure	OSM	(SOSM)	and	Secure	OIP	(SOIP)	

Security	objectives	often	include	authentication,	authorization,	access,	accounting,	
confidentiality,	privacy,	consistency	and	availability	and	are	concerned	with	making	
appropriate	trade-offs.	To	these	ends,	the	information	and	data	models	should	inform	
security.		

Security	introduces	its	own	data,	semantics	and	syntax	used	to	describe	security	objects	
that	implement	security,	privacy,	consistency	and	availability	strategies.		

Security	objects	interface	with	data	objects	at	the	SOSM	/	SIOP	layer	in	order	that	the	
various	protection	strategies	are	efficacious.	This	is	most	effective	when	security	
system	design	and	information	system	design	occur	in	concert	with	one	another.	



IoTSU	Workshop	2016	 4	

For	example,	personal	health	systems	containing	sensitive	medical	information	may	
require	encryption	to	protect	privacy,	but	may	also	require	override	to	inform	first	
responders	in	the	event	of	a	medical	emergency.		

In	practice,	the	OSM	and	SOSM	layers	are	recursively	interdependent.	For	example,	an	
agricultural	soil	moisture	sensor	may	inform	water	distribution	at	pumping	stations,	
water	quality	controllers	and	commodities	brokers	where	each	entity	has	a	distinct	and	
self-interested	security	objectives.	Cost	and	performance	constrained	endpoint	sensors	
depend	on	intermediate	processors	that	enforce	the	manifold	security	objectives	by	
layering	protections	over	data	objects	that	may	have	previously	layered	protections.		

For	these	reasons,	it	is	highly	desirable	for	security	modeling	and	information-modeling	
disciplines	to	have	IM,	IML,	DM,	DML,	OSM,	OIP	tools	and	techniques	in	common.		

3. IoT	System	Construction	
The	right	side	of	Figure	1	offers	a	decomposition	of	a	device	construction	taxonomy	that	
produces	‘images’	of	executable	or	interpretable	objects.	Files	are	organized	into	
packages,	bundles	and	archives	that	represent	installable	images	used	during	software	
update.	Secure	distribution	and	installation	ensures	software	update	images	are	not	an	
attack	vector	for	IoT	networks.	Secure	boot	procedures	may	re-assert	the	security	
properties	established	at	update	time	still	hold.	Hence,	it	is	reasonable	that	software	
update	and	secure	boot	mechanisms	be	treated	together.	

System	Definition	(SD)	

System	Definition	(SD)	is	arguably	the	first	step	in	a	software	update	mechanism	
because	it	uses	an	information	model	to	capture	an	abstract	representation	of	the	
system,	platform	or	device.	The	Yocto	Projectxv	is	a	methodology	for	defining	and	
building	IoT	systems.	It	employs	a	rudimentary	system	definition	language	that	
describes	buildable	software	objects	and	their	interdependencies.	For	example,	Bit	Bake	
uses	a	recipe	file	(.bb)	to	enumerate	various	kernel	drivers	and	modules.		A	catalogue	of	
Bit	Bake	recipes	can	be	used	to	automate	construction	an	off-the-shelf	IoT	device.	

Image	Description	(ID)	

System	Definition	produces	an	image	description	(ID)	file	that	describes	bundlesxvi,	
packagesxvii	and	manifestsxviii	that	relate	compiled	and	interpreted	software	images	in	
accordance	with	a	versioning	scheme.	Image	description	informs	quality	control	
procedures	(i.e.	testing,	validation,	release)	so	that	configuration	management	can	track	
regressions	and	security	events.		

Image	Serialization	(IS)	and	Image	Dependency	Graph	(IDG)	

Image	Serialization	(IS)	describes	how	installable	images	are	prepared	for	transport	
and	installation	on	a	target	device.	This	may	include,	for	example,	construction	of	an	
ISO,	CDROM	or	TAR	archive.	Image	serialization	allows	flexibility	in	optimizing	the	most	
effective	approach	to	distribute	the	software	update	image	to	the	target	platforms.		



IoTSU	Workshop	2016	 5	

Image	Dependency	Graph	(IDG)	is	a	structure	that	tracks	code	execution	paths	
identifying	files,	packages	and	bundles	that	are	needed	to	ensure	successful	execution.	
IDG	also	aids	site-specific	customization.	Unneeded	features	may	be	omitted	or	
specialized	features	may	be	included.	For	example,	a	general-purpose	IoT-bridge	may	
handle	HVAC,	lighting	and	surveillance	traffic.	But	a	site-specific	deployment	only	
enables	HVAC	functionality.	During	a	software	update	scenario,	a	site-specific	policy	
informs	the	install	tool	that	selects	the	HVAC	subset	of	objects	from	the	software	update	
image.	

Secure	Image	Serialization	(SIS)	

Secure	Image	Serialization	(SIS)	protects	the	serialized	image	according	to	a	security	
policy.	Security	goals	may	include	image	authentication,	encryption	and	integrity	
protection.	A	security	model	informs	the	image	serialization	regarding	trust,	credentials	
and	protocols	for	protecting	serialized	images.	For	example,	CMSxix	is	a	data	model,	
based	on	(ASN.1)	and	DM	serialization	method	(BERxx)	for	describing	security	
information.		RFC4108xxi	is	a	proposed	standard	that	further	uses	ASN.1	and	BER	to	
describe	a	manifest	structure	useful	for	protecting	firmware	packages.		

RPMxxii	defines	a	manifest	structure	that	includes	image	integrity	checking.	However,	it	
lacks	confidentiality,	authentication	and	access	control	support.	Integrity	strength	of	
function	may	be	lacking	comprehensive	support	for	NIST	Suite-Bxxiii	recommendations.		
RPM	and	its	cohorts	IPK,	DEB	and	Clear	may	be	a	poor	choice	as	a	comprehensive	DM	
for	object	definition	because	they	lack	much	of	the	richness	that	a	classical	DM	(i.e.	XML,	
JSON,	RAML)	provides.	But	one	might	argue	they	specialize	in	an	area	that	requires	
specialization.	
Software	update	anticipates	manifest	structures	that	relate	protection	mechanisms	
with	complex	update	image	structures	consisting	of	files,	packages,	bundles	and	other	
metadata.	Software	update	tools	must	navigate	complex	IoT	network	topologies	and	
cross	multiple	security	boundaries.	Site-specific	customization	implies	install	tools	can	
interpret	localized	security	polices	and	deployment	considerations.	Consequently,	the	
manifest	structure	is	only	one	element	of	a	comprehensive	software	update	solution.		

Observations	
IoT	object	definition	that	applies	a	4-layer	information	model	seems	well	suited	for	
effectively	dealing	with	complex	interoperability	and	security	challenges.	Similarly	IoT	
image	construction	and	distribution	strategy	that	applies	a	4-layer	information	model	
seems	well	suited	for	dealing	with	complex	device	deployment	challenges.	
Security	enforcement	is	a	point	where	data	objects	and	execution	objects	meet.	
Protection	strategies	for	both	data	and	execution	objects	are	similar.	Both	expect	a	rich	
environment	for	describing	IoT	devices,	networks	and	objects.	Both	anticipate	
consistently	applied	security	semantics	and	syntax.		



IoTSU	Workshop	2016	 6	

4. Recommendation	
Secure	operation	in	a	constrained	environment	is	an	overriding	theme	in	IoT.	Reducing	
the	number	of	parsers,	syntax	checkers	and	semantic	validators	is	a	consideration	when	
trying	to	minimize	a	device	footprint.	To	that	end,	the	architecture	of	Figure	2	is	
suggested.	

	
Figure	2.	–	A	common	IoT	object	serialization	method	that	allows	IoT	data	objects,	
platform	image	objects	and	security	objects	to	be	expressed	using	the	same	
serialization	suggests	a	constrained	device	implementation	need	not	require	multiple	
serialization	conventions.		

For	example,	given	an	IPSO	Alliance	object	information	modelxxiv;	RPM	as	the	platform	
image	information	model	and	CMS	as	a	security	information	model.	Even	if	XML	is	the	
data	model	language	used	to	describe	IPSO	objects;	ASN.1	is	used	to	describe	software	
update	packages	and	JSON	is	used	to	describe	security	data.	This	architecture	would	
require	serialization	under	a	common	object	serialization	standard	–	for	example	CBOR.	
Consequently,	the	device	firmware	needed	to	process	a	secure	software	update	may	be	
leveraged	when	processing	IoT	objects	during	normal	operation.		

Security	and	reliability	benefit	is	also	achieved	because	testing	and	validation	of	
firmware	also	benefits	IoT	object	processing.	Overall	complexity	is	reduced	resulting	in	
fewer	bugs	and	therefore	fewer	updates	to	deployed	devices.		

Reducing	the	need	for	software	updates	while	still	providing	software	update	
mechanisms	in	IoT	systems	is	a	strategy	that	scales	best	given	projected	growthxxv	of	
IoT	networks	in	the	next	4	years.	

Software	update	mechanisms	that	are	defined	with	a	common	object	serialization	layer	
will	benefit	from	a	richer	set	of	authoring	and	modeling	tools	that	can	be	used	to	
describe	more	completely	system	behavior	for	both	data	and	executable	as	well	as	
describe	how	both	are	secured.	Secure	system	architecture	requires	consistent	



IoTSU	Workshop	2016	 7	

application	of	security	practices.	This	is	more	easily	achieved	when	both	data	and	
executable	objects	use	common	understanding	of	security	encodings.	
																																																								
i	IPSO	-	http://www.ipso-alliance.org/wp-content/uploads/2016/01/ipso-paper.pdf	
ii	LWM2M	-	http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/oma-lwm2m-object-
connectivity-management-v1-0	
ii	LWM2M	-	http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/oma-lwm2m-object-
connectivity-management-v1-0	
iii	OCF	-	http://openconnectivity.org/wp-content/uploads/2016/01/OIC_Specification_Overview_201501131.pdf	
iv	Alljoyn	-	https://allseenalliance.org/framework/documentation	
v	https://en.wikipedia.org/wiki/Information_model#cite_note-Lee99-1	
vi	https://en.wikipedia.org/wiki/Data_modeling	
vii	https://en.wikipedia.org/wiki/Data_Format_Description_Language	
viii	https://en.wikipedia.org/wiki/Serialization	
ix	RAML	-	docs.raml.org/	
x	RFC6025	ASN.1	-	https://tools.ietf.org/html/rfc6025;	ASN.1	-	ITU	X.680	-	http://www.itu.int/itu-
t/recommendations/rec.aspx?rec=x.680		
xi	RFC7159	JSON	-	https://tools.ietf.org/html/rfc7159		
xii	RFC7049	CBOR	-	https://tools.ietf.org/html/rfc7049		
xiii	RFC4648	BASE64	-	https://tools.ietf.org/html/rfc4648		
xiv	XML	-	http://www.w3.org/TR/REC-xml/		
xv	Yocto	Project	-	https://www.yoctoproject.org		
xvi	Bundles	-	https://clearlinux.org/documentation/index_bundles.html		
xvii	Packages	-	https://en.wikipedia.org/wiki/Package_manager		
xviii	Manifest	-	https://en.wikipedia.org/wiki/Manifest_file		
xix	CMS	–	RFC5652	-	https://tools.ietf.org/html/rfc5652		
xx	BER	–	ITU	X.690	-	http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf		
xxi	RFC4108	-	https://tools.ietf.org/html/rfc4108		
xxii	RPM	-	https://en.wikipedia.org/wiki/RPM_Package_Manager		
xxiii	NIST	Suite-B	-	http://csrc.nist.gov/groups/SMA/ispab/documents/minutes/2006-03/E_Barker-
March2006-ISPAB.pdf		
xxiv	IPSO	Alliance	object	model	-	https://www.iab.org/wp-content/IAB-uploads/2016/03/ipso-paper.pdf		
xxv	200B	IoT	devices	by	2020	-	http://www.intel.com/content/www/us/en/internet-of-
things/infographics/guide-to-iot.html		


