Position Paper for IAB Workshop on IP Address Geolocation (ipgeows)

Applicant: Om Prakash Sharma

Role: Application Developer | Lead Al/ML Engineer **Affiliation:** acAlberry.io | Nepal Cloud Professionals

Email: ompie.py@gmail.com

1. Introduction

As an application developer and AI/ML engineer, I frequently integrate IP address—based services into real-world applications, ranging from educational platforms and content delivery systems to cloud-native applications deployed across multi-cloud environments. My experience spans both user-facing applications and infrastructure-level orchestration, which has given me insight into the strengths and shortcomings of IP geolocation today.

I am particularly interested in contributing to this workshop from the perspective of a **developer** building applications for diverse and bandwidth-constrained regions such as Nepal, where user privacy, localization accuracy, and accessibility are often at odds with each other.

2. Today's Use Cases

From my experience, IP geolocation is used in several areas:

- Content delivery & access control: Video streaming platforms and CDNs rely on IP geolocation to enforce regional licensing and optimize latency.
- Security & fraud detection: IP-geo data is frequently used to detect anomalies in user logins or flag suspicious activities.
- **Localization**: Applications adapt languages, currencies, and even regulatory notices based on detected location.
- Education platforms: In my current work, geolocation helps in tailoring e-learning content distribution, ensuring compliance with regional education policies.

These are vital but often **rely on heuristics with imperfect accuracy**.

3. Gaps and Problems

- Accuracy issues in developing countries: In Nepal, IP blocks are often misattributed
 to incorrect cities or even neighboring countries. This creates problems for services like
 online banking, e-learning access, or CDN optimization.
- **Privacy trade-offs**: While IP-geo provides utility, it often exposes more location information than users expect. This is particularly concerning for youth and vulnerable populations in digital literacy programs I've worked on.
- Lack of transparency in databases: Developers rely on third-party geolocation providers, but the update frequency, source data, and error rates are rarely disclosed.
- File formats and interoperability: CSV and JSON are widely used but lack standardization in schema, leading to inconsistencies when integrating across multiple providers.

4. Future Opportunities

I believe the future of geolocation should explore:

- Hybrid approaches: Combining network signals (cell towers, WiFi, ISP hints) with IP-geo to improve accuracy, especially in regions where IP allocation is inconsistent.
- **Privacy-preserving mechanisms**: Allowing **coarse location hints** (e.g., country or region-level only) without exposing exact user geographies.
- Standardization of data formats: Establishing open schemas for IP-geo data with versioning and trust metadata would simplify integration for developers.
- Alternative identifiers: Instead of relying only on IP addresses, developers could benefit from **network type indicators** (e.g., fiber, satellite, cellular) that help optimize application delivery without tying it directly to a location.

5. Conclusion

As an application developer and AI/ML engineer, I see IP geolocation as both a **powerful enabler** and a **barrier to inclusivity and privacy**. My contribution to the workshop would be to bring in perspectives from:

- Developers working in bandwidth- and infrastructure-limited environments
- Use cases in education, security, and content delivery
- The tension between localization accuracy and user privacy

I am keen to participate in discussions and breakout sessions, and I hope to contribute towards designing future geolocation mechanisms that are developer-friendly, privacy-respecting, and globally inclusive.