Enabling Traffic Managementwithout DPI

DPI Is Dead, Long Live Traffic Management

Mirja Kühlewind

Dirk Kutscher

Brian Trammell

Managing Radio Networks in an Encrypted World (MaRNEW) Workshop Atlanta, September 24/25 2015

"Cooperative Traffic Management"

- Common denominator for many workshop contributions
- "Extend current connection-based encryption approaches by integrating middleboxes into the loop"

- Difficult to do right and to manage reliably
 - Trust?
 - Robustness?
 - Performance?

Previously

UPCON – Solution outline

- Detect user plane congestion in Radio Access, Backhaul or Core Network entities
- Apply different traffic handling / QoS schemes to user plane traffic, based on Subscriber profile, Application type, Content type
- Develop adequate traffic scheduling and traffic engineering mechanisms, such as per-user or per-flow queuing, application-aware QoE scheduling, flow-based handover, media compression, etc.

4. Enable policy-based control for operators to flexibly configure the traffic the network behavior under handling mechanisms

Currently Proposed

Throughput Guidance Solution Architecture

Throughput Guidance per user is sent to the TCP video server

- Application-provider-centric approach
- Conveying information about estimated current base station capacity to TCP senders
- Only works with TCP
- Implemented as TCP Option interaction with middleboxes?
- Very specific generality?

ion control decisions and also to ensure that the applicationradio downlink

provider and the TCP server

Thesis: Two Main Concerns

1. Meaningful Capacity Sharing

- Enabling low-latency communication in the presence of high network utilization
- Incentivize application/sender adaptivity

2. Reacting correctly to (wireless) link layer conditions

Distinguish from congestion events

Traffic Management Requirements

Application-independence: permission-less innovation

- No DPI required
- Should work with all (future) application types
- Should work with all (future) transport protocols

Efficiency and Effectiveness

- Should interact well with transport
- ... Without complex management frameworks

Generality

Should not be limited to specific systems or configurations

Privacy-friendly

In-band cooperation tools should only expose essential traffic management information

Congestion Exposure Principle

Lessons Learned from ConEx

- Congestion exposure: means to incentivize application/sender adaptivity
- Mechanism vs policy
- Making current congestion visible to network and endpoints may not be enough
- IP not designed for in-band management
- Authentication needed

Substrate Protocol for User Datagrams

Architecture

Extensible and Efficient Traffic Management

More flexible traffic management transport

- Allow for generally encrypted traffic
- SPUD prototype as a platform for experiments
- Design for flexibility without ignoring efficiency requirements
- Finding minimum set of information to expose (PII issue)

Re-think capacity sharing

- Congestion accountability != TCP fairness
- Incentivizing adaptability and immediate response to congestion
- Support for low-latency: DCTCP-like
- Simple QoS distinguish interactive real-time from rest of traffic at bottlenecks
- Additional signaling for non-congestion-induced events (wireless)
- Hop-by-hop optimization and end-to-end control loops