
Kent Watsen
NEMOPS Position Paper

November 17 , 2024

Dear NEMOPS PC,

The current state of network management is not bad, but it can be improved. When
thinking about the Next-Era of Network Management Operations, I have three
thoughts:

1. The RESTCONF with the JSON encoding should be promoted, and NETCONF and
RESTCONF’s XML obsoleted. Why promote RESTCONF? The reason is because it is
easy to develop a RESTCONF clients. Every programming language has easy to use
HTTP-client libraries. The `curl` and `wget` CLI utilities can be used for scripting. For
those claiming that gRPC has a stronger ecosystem than NETCONF, I agree, but the
HTTP ecosystem is even larger. Why use the JSON encoding? RESTCONF currently
supports both JSON and XML encodings. In theory, RESTCONF could support a
binary encoding as well (e.g., CBOR), but RFC 3535 states that text-based formats
should be used. Between JSON and XML, JSON is more well supported by
programming languages (e.g., a JSON file can be directly serialized into a Python
object). Caveat: whilst RFC 3535 states that data should be textual, there is a strong
desire for asynchronous notifications to be binary, given the volume and need for
closed loop automation via telemetry analytics, Why obsolete NETCONF and
RESTCONF’s XML encoding? because having too many choices fractures the
community.

2. The Network Management Datastore Architecture (NMDA), defined in RFC 8342,
should be mandatory to implement in the next version of the RESTCONF and
NETCONF protocols. Specifically, clients should be expected to understand the
<factory> datastore, <system> datastore, the “template” mechanism, and the “inactive”
metadata annotation (letting go of the “<running> alone must be valid” mantra). Level-
upping to this basis will greatly improve manageability.

3. There should be a “library” of adaptors to transform standards-based data models
(data conforming to YANG modules) to the native data model supported by devices.
The reality is that devices rarely implement standard models. Many times the
Orchestrator/Controller will have code to transform service-level model data to
device-specific data models (adapters). Regardless where the transformation
executes (on a device, on a controller, or a cloud-based service), it would be ideal if
the transformation could be provided as a download. I’m envisioning something
like a AppStore/Marketplace site that hosts adaptors for YANG modules, mapping
to a variety of devices. The adaptors should be language-agnostic (possibly a
RESTful service), as having language-specific libraries would cause fractures in the
community. The adaptors could be both open source (community-developed) or
commercial. It just takes some entity to create the such a space (website), which I
think the IAB/IETF is ideally suited to do. [Disclaimer, data transformations may be
one-way only, e.g., the Network is the Master]

4. Taking the previous idea to the next level, not only could there be data-adapters,
but there could also be device-adapters. The difference being that data-adaptors
assume that the target device can consume structure data e.g., via NETCONF or
RESTCONF. But some devices may only support CLI (e.g., over a serial interface) or
SNMP. For these devices, it is possible to reverse-engineer a YANG module for the
CLI, but there is a need to send the device-specific data to the device via its CLI, which
is where a device-adapter is needed. A framework could be developed to host and
execute device-adapters. If the framework itself were open/free, language agnostic
(e.g., micro services), and adapters could be uploaded/rated by anyone, this could
enable this common Operator problem to be solved-once and shared by all.
[Disclaimer: the importance of such an endeavor is questionable, given complexity and
limited utility of devices. That said, to this day, some new devices only have CLI
interfaces, suggesting this being an enduring problem].

