
Composable, Declarative, Reproducible, Verifiable
Network and Service Configurations

Jürgen Schönwälder, Constructor University

October 16, 2024

1 Introduction

Looking back at the Network Management Workshop more than 20 years ago [1], it is revealing
how much the recommendations were shaped by substantial discussions in the protocol developer
and network operator communities at that time. Although some hot discussion topics from that
time have since become largely irrelevant, certain technology choices suggested back then still
have an impact on our network management technology and standards today (albeit not always
in the most optimal manner).

The IETF has undoubtedly made significant advancements subsequent to the workshop. The
YANG modeling language [2] (originally published in 2010) has largely replaced the SMIv2 [3]
language used to write MIB modules for SNMP [4]. There are meanwhile more than 80 standards-
track RFCs with YANG modules, and the number is growing. Other standards developing organi-
zations like the IEEE have adopted YANG for their purposes. Similarly, NETCONF [5] (originally
published in 2006) and RESTCONF [6] (published in 2017) have seen widespread adoption.

While the YANG data modeling language has been successful, it is not without flaws and limi-
tations. It is thus desirable that YANG technology continues to evolve to address some of the
shortcomings. However, a more significant step forward is required if we think about a new era of
network management operations, similar to the major leap we made after the IAB workshop more
than 20 years ago.

This position statement is based on the recognition that most of the work done within the IETF af-
ter the IAB workshop in 2002 focused on making device configuration more robust and to support
configuration automation at the device interface. While this provided us with a valuable foundation
for driving automation today, there is still a gap of open standards when we consider the config-
uration of a network as a whole. In the following, first some remarks are made on the evolution
of existing technology in Section 2 before discussing aspects to consider once the IETF shifts its
focus towards network and service configuration in the future in Section 3. Section 4 concludes
this position paper with a short summary and two recommendations.

2 Evolution of Existing Technology

The IETF has a strong track record of maintaining and evolving technology. A careful evolution of
technology is important to keep it relevant and to react to requirements surfacing from the users
of a technology. This applies to both the data modeling language YANG and the communication
protocols, primarily still NETCONF and RESTCONF as far as the IETF is concerned. In the
following, we will more specifically focus on the data modeling aspects.

For the YANG data modeling language, there is a collection of requests to improve the language
and to fix known limitations on the YANG next issue tracker. It is good to see that the IETF is
starting to discuss these requests and hopefully this eventually leads to an improved version of

1



YANG. There is also good work underway in the IETF to add a package mechanism to the YANG
language, which will help manage growing collections of modules.

Additional work could increase the declarative nature of the language and to improve the mech-
anisms available to express constraints on valid configurations. For example, the current mech-
anisms, like XPATH [8] in when and must statements, or regular expressions to restrict the value
space of data types, have their complexities and limitations. Experience tells us that it is difficult to
get XPATH expressions in when and must right and there are limitations on their expressive power,
some are addressed by additional function libraries.

Similarly, regular expressions used to constrain value spaces of data types often turn out to be
difficult. Authors trying to capture ABNF [9] grammars in regular expressions usually experience
these limitations. One could investigate other mechanism to constrain value spaces that can deal
with more complex formats.

Another aspect is to improve support for building data models from reusable model components.
YANG is somewhat limited in this regard, as it solely provides groupings as reusable structures,
which have their own constraints and limitations. It may be helpful to draw inspiration from modern
type systems, such as those foound functional programming languages, which are effective in
supporting composition.

3 Focus on Network and Service Configuration

To make a leap step forward, it is necessary to shift the focus from device configuration to net-
work and service configuration. So far, there has been limited success in being able to describe
and exchange configurations of entire networks or complex services. While some attempts were
made to model network services using YANG data models, it is not clear whether this is a good
solution or whether additional technologies could better support describing network or service
configurations.

3.1 Composable Configurations

To handle complexity, there is a need to better support composition of configurations. There
seems to be a lack of open technology enabling operators to define reusable configuration com-
ponents for specific services that do compose well into a larger network and service configura-
tions. There is room for open technology that paves the way to dedicated tools that can validate
or even verify desired properties of a composition.

3.2 Declarative Configurations

YANG helped to make configuration data models more declarative than they used to be before
YANG. In addition, NETCONF introduced support for robust configuration change transactions
involving multiple network elements. The Network Management Datastore Architecture (NMDA)
[7] provides a detailed model of the configuration information flow in a system. Devices supporting
NMDA can clearly expose the origin of configuration settings (e.g., intended, system, learned,
default). NMDA also allows to distinguish clearly between intended and applied configuration.

Building on this, it is desirable to expand things to the network scope. A network configuration
model should be declarative and at the same time detailed enough that it is possible to verify that
certain goals have been met. This includes mechanisms that can be used by network operators
to express their specific deployment constraints that go beyond rather generic constraints such as
connectivity. Certain network level constraints may even translate to constraints that must be met
by device configurations. Note that YANG currently has no good support for adding deployment
specific constraints to data models. It can be expected that tackling the declarative network and
service configurations may lead to new requirements for the YANG language.

2



3.3 Reproducible Configurations

Network configurations are constantly evolving and there is a need to support a smooth transition
between network configurations. We currently have no standardized mechanisms to express even
simple things like “bring all systems back to network configuration X ” that worked yesterday.

Some orchestrators may provide such functionality by translating a network wide version change
to a number of device specific configuration change transactions that are pushed to network ele-
ments. However, moving between network configurations could be much faster and likely also be
more robust and efficient if devices would maintain multiple named and versioned configurations
with fast transitions between them.

In the computing world, modern operating systems like NixOS [10] explore radically new ways
to think about the configuration of an entire operating system. NixOS is based on a declara-
tive software package management system. Package configurations are associated with stable
identifiers that also capture versions of the dependencies. This makes NixOS configurations re-
producible and switching between configurations is fast, easy, and robust. We do not seem to
have something equivalent in the networking space.

3.4 Verifiable Configurations

The ultimate goal of declarative and reproducible configurations are verifiable configurations that
provably have certain properties such as resilience against certain types of failures or robustness
against certain attacks. This requires to establish layered formal models that can interface to proof
assistants, such as Isabelle [11], Coq [12], or Lean4 [13].

For example, formally verifying that a configuration of a complex network enforces certain access
control policies is crucial once several firewalls and tunnels are involved. Implementing security
policies correctly has been shown to be challenging, in particular in enterprise networks that often
grow in somewhat uncontrolled fashion. Similarly, verifying that the configuration of a complex
network supports suitable backup paths that can keep core services connected in situations of
component failures or certain attacks is invaluable.

The availability of reliable topology information is a crucial prerequisite for reasoning about net-
work configurations. While some work has already been done in this space, it remains unclear
whether the existing models are sufficient to drive network-wide configuration verification systems.

4 Conclusions

Over twenty years ago, the IAB Network Management workshop laid the foundation for robust and
programmable device configuration management interfaces that are widely deployed today. The
work accomplished by the IETF after the workshop has lead to notable advances when it comes
to automated and robust device configurations. This leads to the first recommendation:

R01 The IETF should actively maintain and evolves the technology enabling robust device con-
figuration. It is necessary to address shortcomings and limitations in a timely manner.

Today’s IAB workshop on the Next Era of Network Management Operations could signal the be-
ginning of a shift of the focus towards network configurations (as opposed to just device con-
figurations). This is a logical progression towards managing networks and services instead of
collections of devices. This leads to the second recommendation:

R02 The IETF and the IRTF should develop technologies that support composable, declarative,
reproducible, and verifiable network and service configuration. Ideally, the technologies
should create an ecosystem of interoperable tools supporting tasks throughout the network
and service life-cycle.

3



References

[1] J. Schönwälder. Overview of the 2002 IAB Network Management Workshop. RFC 3535,
International University Bremen, May 2003.

[2] M. Bjorklund. YANG - A Data Modeling Language for the Network Configuration Protocol
(NETCONF). RFC 6020, Tail-f Systems, October 2010.

[3] K. McCloghrie, D. Perkins, and J. Schönwälder. Structure of Management Information Ver-
sion 2 (SMIv2). RFC 2578, Cisco Systems, SNMPinfo, TU Braunschweig, April 1999.

[4] J. Case, R. Mundy, D. Partain, and B. Stewart. Introduction and Applicability Statements for
Internet Standard Management Framework. RFC 3410, SNMP Research, Network Asso-
ciates Laboratories, Ericsson, December 2002.

[5] R. Enns. NETCONF Configuration Protocol. RFC 4741, Juniper Networks, December 2006.

[6] A. Bierman, M. Björklund, and K. Watsen. RESTCONF Protocol. RFC 8040, YumaWorks,
Tail-f Systems, Juniper Networks, January 2017.

[7] M. Björklund, J. Schönwälder, P. Shafer, K. Watsen, and R. Wilton. Network Management
Datastore Architecture (NMDA). RFC 8342, Tail-f Systems, Jacobs University, Juniper Net-
works, Cisco Systems, March 2018.

[8] J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0. Recommendation, W3C,
November 1999.

[9] D. Crocker and P. Overell. Augmented BNF for Syntax Specifications: ABNF. RFC 4234,
Brandenburg InternetWorking, THUS plc., October 2005.

[10] Eelco Dolstra and Andres Löh. Nixos: a purely functional linux distribution. SIGPLAN No-
tices, 43(9):367–378, September 2008.

[11] T. Nipkow, L.C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for Higher-Order
Logic. Springer, 2024.

[12] Adam Chlipala. Certified Programming with Dependent Types: A Pragmatic Introduction to
the Coq Proof Assistant. The MIT Press, 2013.

[13] Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming
language. In Automated Deduction – CADE 28: 28th International Conference on Automated
Deduction, Virtual Event, July 12–15, 2021, Proceedings, page 625–635, Berlin, Heidelberg,
2021. Springer-Verlag.

4


