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Abstract—This paper proposes an evolved network manage-
ment architecture that integrates CORECONF alongside exist-
ing NETCONF deployments to optimize telemetry operations,
particularly in constrained and resource-limited environments.
Adoption of CORECONF can be done progressively in stages
by using plugins or middlewares as shown in these architectures.
By leveraging the efficiency of CORECONF with Concise Binary
Object Representation (CBOR) encoding and Schema Item Iden-
tifiers (SIDs), the architecture enhances performance, scalability,
and sustainability in network operations. This integration is
especially beneficial for applications such as energy-efficient net-
working, IoT deployments, high-density telemetry scenarios, and
unique use cases involving secondary connectivity technologies
and asymmetrical connectivity.

Index Terms—NETCONF, CORECONF, Network-
Management, Constrained-Devices, IoT-Networks

I. INTRODUCTION

The proliferation of internet services in the early 2000s gave
rise to complex networks of routers, switches, and firewalls to
manage home and enterprise networks. Network Configuration
Protocol, also known as NETCONF, is a widely adopted net-
work management protocol for these devices first standardized
in RFC 4741, then updated by RFC 6241 by the Internet
Engineering Task Force (IETF) [1]. However, as the networks
have expanded to encompass several constrained devices from
the Internet of Things (IoT) domain, NETCONF protocol has
failed to adapt to these lightweight devices. The overhead
associated with NETCONF, particularly for telemetry data
collection, can severely drain the resources such as CPU and
network-bandwidth of these constrained devices making it
unsuitable[2].

RESTCONF protocol was introduced as an alternative way
to perform network configuration based on RESTful princi-
ples first standardized in RFC 8040 [3]. Unlike NETCONF,
RESTCONF is web centric and utilizes Hypertext Transfer
Protocol (HTTP) for the network management with solid
support for transaction based interactions (such as commit,
lock, and rollback). This paper will use the term “NETCONF”
in a broad sense to mean a NETCONF and/or a RESTCONF
system. Jethanandani et al. The primary focus of this paper
will be NETCONF systems, which predates RESTCONF in
YANG-based network management [4].

Fig. 1: Basic NETCONF Model

CoAP Management Interface (CORECONF) is a promising
protocol for network management of such constrained devices
being standardized by the IETF Constrained RESTful Environ-
ments (CoRE) Working Group [5]. Moreover, incorporating
CORECONF together with NETCONF systems can allow
administrators to benefit from collecting telemetry data with
very low overhead yet maintaining compatibility with existing
NETCONF systems.

II. MOTIVATION AND BACKGROUND

A. NETCONF Deployments

NETCONF utilizes a server-client architecture where the
client sends commands to the server to configure the network,
retrieve the data, and execute other network-management oper-
ations. Typically, these commands are implemented as remote
procedure calls (RPCs) on the NETCONF servers, encoded in
extensible markup language (XML) and communicated over
secure socket shell (SSH) [1] as shown in figure 1. Addition-
ally, Yet Another Next Generation (YANG) data modelling
language is used to standardize NETCONF messages across
all the devices built by various vendors [6].

Although NETCONF systems seem straightforward to build
and deploy, they are not well suited for constrained devices as
shown in A. Sehgal et al. [7] due to their relative large system
requirements. There have been variants of NETCONF proto-
cols, such as NETCONF light proposed by Schönwälder et al.
[8] specifically for constrained devices. However, Mavromatis
et al. [9] demonstrated that even NETCONF light requires
more processing power, device energy and provisioning time
than lightweight networks can afford.

B. Overview of CORECONF

CORECONF is a RESTful application protocol used by
constrained devices to exchange data over CoAP/UDP as the
combination is known to be relatively less complex with low



overhead [2, 5]. The protocol allows us to encode CoAP pay-
load into a terse representation by assigning integers to YANG
identifiers of the data models, also known YANG Schema
Item iDentifiers (YANG SIDs) [10]. Furthermore, this data is
serialized into Concise Binary Object Representation (CBOR)
form, further reducing the message footprint [11]. Thus, unlike
NETCONF, CORECONF allows constrained devices to send
messages even on low bandwidth networks [2]. Furthermore,
as shown by Toutain et al. in their ietf-draft, YANG models
can assist with rapid prototyping of CORECONF systems by
automated code generation thereby reducing development time
and effort [12].

Contrary to NETCONF, which supports secure communi-
cation over SSH or Transport Layer Security (TLS), CORE-
CONF data is communicated using CoAP over Datagram
Transport Layer Security (DTLS) or Object Security for Con-
strained RESTful Environments (OSCORE). These encryption
schemes are designed for constrained environment and hence
would make CORECONF ideal choice for telemetry data.

C. Proposed Architecture

This section discusses various possible architectures to
integrate NETCONF with CORECONF and potential oppor-
tunities and drawbacks with them.

1) Basic NETCONF deployments: Existing NETCONF
based systems can be modelled as a two-actor communication
system described in figure 2 where actor #1 is a server (a
router or switch) and actor #2 is a client (controller) which
intends to perform network management and collect telemetry
data from the server.

Fig. 2: Scenario 1: Basic NETCONF deployments

2) CORECONF for telemetry only: In this scenario shown
in figure 3, the controller acts as a node only collecting
telemetric data and archiving it in a datastore, which can be
used for further analysis.

The router/switch is pre-installed with NETCONF server
ready to send telemetry data to any NETCONF client which
requests it. Thus, we add a middleware which has two main
components. First component is an emulated NETCONF client
running on the same device. It makes appropriate calls to
NETCONF server to receive telemetry data. This data is later
encoded into CORECONF-YANG/CBOR format and sent over
the network to the controller.

This is particularly advantageous for two reasons:

• Leveraging strength of each protocol, namely — CORE-
CONF protocol to send telemetry data without large over-
head and NETCONF’s ability to architect and manage
complex networks.

• Existing clients will continue to be operable with the
servers for management functions, the CORECONF mid-
dleware can be an implemented as a different application.

Controller accepts this telemetry data in CORECONF-
YANG/CBOR form, decodes it and accumulates in a datastore.

Fig. 3: Scenario 2: CORECONF for telemetry only

3) CORECONF-centric Integration: In this particular sce-
nario as shown in figure 4, both the tasks: network manage-
ment and telemetry reporting happens over the CORECONF
middleware.

With this approach, all the requests are streamlined through
CORECONF middleware, and due to efficient encoding of
CORECONF, we should see reduced payload sizes between
switch and the controller.

On the flip side, the CORECONF Middleware becomes
single point of failure with no possibility to perform even
network management in case of a failure.

Fig. 4: Scenario 3: CORECONF-centric Integration

4) Fully Integrated Server: In a fully integrated architec-
ture, the network management can be performed over either
NETCONF or CORECONF protocols. However, if the client
is a legacy NETCONF client, it must continue to use CORE-
CONF middleware to help exchange data. This is illustrated
in figure 5. The obvious advantage of this architecture is that
the NETCONF-CORECONF translation is handled by server
solely and directly, eliminating the need for middlewares.
However, it may increase the development time and effort for
such a tight integration on the server side.



Fig. 5: Scenario 4: Fully Integrated Server

III. APPLICATIONS / USE CASES

Applications in several areas can benefit from low over-
head and efficient message encoding provided by CORE-
CONF protocol such as IoT for smart cities and industrial
networks, environmental monitoring, vehicle-to-infrastructure
(V2I) amongst others. Following section has a deeper look on
some particularly interesting use-cases.

A. Energy-Efficient Networking as specified by the GREEN
WG

One of the mandates of the Getting Ready for Energy-
Efficient Networking Working Group (or GREEN WG), is
to identify opportunities to optimize energy consumption of
networking devices by collecting telemetry data [13]. These
models to collect and generate energy-related statistics must
be developed in YANG instead of Management Information
Base (MIBs) [13]. Heterogenous networks using NETCONF
for management can be easily configured to use CORECONF
and profit from its low overhead by using one of the proposed
architectures in section II-C.

For instance, cloud data centres can deploy CORECONF
protocol internally to collect real-time data on power consump-
tion or to configure energy-saving modes on the devices allow-
ing their infrastructure to adapt to capacity utilization without
significant overhead associated with network management.

B. Unique Use Cases Involving Secondary Connectivity and
Asymmetrical Networks

1) Secondary Connectivity for Device Wake-Up: For IoT
devices, the majority of energy consumption results from radio
communication [14]. To conserve their energy, these devices
are equipped to use low-power/sleep modes and transmit data
over Low Power Wide Area Networks (LPWAN). LPWAN
technologies like LoRaWAN and NB-IoT enable such devices
to receive wake-up signals and switch to a faster primary
networking interfaces such as ethernet or wi-fi to perform more
complex configuration tasks.

Communicating on LoRaWAN is severely constrained with
typical payload sizes of 51 bytes (for SF 12 on EU868
band) [15]. CORECONF protocol deployed on top of header
compression frameworks like Static Context Header Compres-
sion and Fragmentation (SCHC), would be suitable for such
constrained environment [16].

2) Highly Asymmetrical Connectivity: Systems such satel-
lite are characterized by highly asymmetrical connectivity
where the downlink bandwidth is much larger than its uplink
to optimize for its disproportionately higher use of downloads
than uploads. In such situations, devices may use popular
specifications like Sensor Measurement Lists (SenML) to
intermittently upload their telemetry data [17]. CORECONF
protocol can be extended to such systems by creating YANG
models for such specifications to further reduce message sizes
and improve interoperability [18].

3) Telemetry via Broadcast over Bluetooth Beacons: Simi-
lar to constrained devices on LPWAN, CORECONF can be
used to broadcast telemetry messages over Bluetooth Low
Energy (BLE) beacon messages, which can be further com-
pressed using SCHC [19]. Some examples can be:

• Smart Environments: Sensors broadcast environmental
data to any listening devices without establishing connec-
tions.

• Tiny embedded devices: Suitable for tiny embedded
devices that cannot support full protocol stacks required
by NETCONF or RESTCONF.

IV. COMPARATIVE ANALYSIS OF PROTOCOL EFFICIENCY

1) Payload Size Reduction with SIDs: Using SIDs in
CORECONF replaces string identifiers with compact integers,
significantly reducing data sizes.

Using the methodology described in Toutain et al. [12], the
following JSON message (139 bytes) containing information
about temperature, power consumption and energy saving
mode can be reduced into CORECONF-YANG/CBOR form
(49 bytes) as follows:

{
"energy-saving": {

"device": [
{

"device-id": "router-01",
"metrics": {
"power-consumption": 125.50,
"energy-saving-mode": "active",
"temperature": 45.3

}
}]}}

The corresponding SID file for the data model can be
generated using pyang tool as follows:

{
"assignment-range": [

{
"entry-point": 60000,
"size": 100

}
],
"module-name": "energy-saving",
"module-revision": "unknown",
"item": [

{
"namespace": "module",
"identifier": "energy-saving",
"sid": 60016



},
{
"namespace": "data",
"identifier": "/energy-saving:energy-

saving",
"sid": 60006

},
{
"namespace": "data",
"identifier": "/energy-saving:energy-

saving/device",
"sid": 60004

},
{
"namespace": "data",
"identifier": "/energy-saving:energy-

saving/device/device-id",
"sid": 60000

},
{
"namespace": "data",
"identifier": "/energy-saving:energy-

saving/device/metrics",
"sid": 60003

},
{
"namespace": "data",
"identifier": "/energy-saving:energy-

saving/device/metrics/power-
consumption",

"sid": 60002
},
{
"namespace": "data",
"identifier": "/energy-saving:energy-

saving/device/metrics/energy-saving-
mode",

"sid": 60001
},
{
"namespace": "data",
"identifier": "/energy-saving:energy-

saving/device/metrics/temperature",
"sid": 60005

}
]

}

Using a tool like pycoreconf, the JSON message is then
transformed to its CORECONF-YANG/CBOR diagnostic form
as follows:

{60006: {-2: [{-4: "router-01",
-1: {-2: "active",

-1: 125.5,
2: 45.3}}]}}

Further, this can be serialized into CBOR and represented
in hexadecimal as follows:

a119ea66a12181a22369726f757465722d303120
a320fb405f600000000000216661637469766502
fb4046a66666666666

Thus, JSON message is reduced from 139 bytes to 49 bytes
without losing an information, achieving a compression of ≈
65%.

V. TRAFFIC CALCULATIONS OVER A DAY

To illustrate the impact of using CORECONF with SIDs on
network traffic, we present calculations comparing NETCONF
and CORECONF for telemetry data transmission over a day.

Assumptions

Protocol Payload Size Reduction Com-
pared to NET-
CONF

NETCONF/XML 3̃50 bytes N/A
CORECONF/CBOR
without SIDs

1̃20 bytes 6̃5.7% reduction

CORECONF/CBOR
with SIDs

3̃8 bytes 8̃9.1% reduction

TABLE I: Comparison of payload size for a sample XML
message

• Number of Devices: 10,000
• Telemetry Interval: Every 5 minutes
• Messages per day per Device:

24 hours × 60 minutes
5 minutes

= 288

• Total Messages per day:

288× 10, 000 = 2, 880, 000

A. Data Transmission per day

Protocol Payload Size per
Message

Total Data
per day
(MB)

Data Reduction
vs. NETCONF

NETCONF/XML 350 bytes 960 MB N/A
CORECONF/CBOR
without SIDs

120 bytes 329 MB 6̃5.7% reduction

CORECONF/CBOR
with SIDs

38 bytes 104 MB 8̃9.1% reduction

TABLE II: Data Transmission Comparison

Calculations

• NETCONF/XML:

2, 880, 000×350 bytes = 1, 008, 000, 000 bytes ≈ 960 MB

• CORECONF/CBOR without SIDs:

2, 880, 000×120 bytes = 345, 600, 000 bytes ≈ 329 MB

• CORECONF/CBOR with SIDs:

2, 880, 000× 38 bytes = 109, 440, 000 bytes ≈ 104 MB



Data Savings

• NETCONF vs. CORECONF with SIDs:

960 MB − 104 MB = 856 MB (≈ 89% reduction)

• CORECONF without SIDs vs. CORECONF with
SIDs:

329 MB − 104 MB = 225 MB (≈ 68% reduction)

Thus, with reduced payload transmission without loss of
information, the system should save on network bandwidth
and the devices should save on energy, improving scalability
of the network.

VI. FUTURE DEVELOPMENT

CORECONF protocol lacks a rich software ecosystem. For
instance, there are software libraries like pycoreconf [20] and
ccoreconf [21] to generate and manipulate CORECONF data
embedded systems, but they lack tighter integration with em-
bedded operating systems, header-compression libraries and
cryptographic libraries amongst others. Certainly this can be
developed with more interest from the industry.

Additionally, CORECONF can leverage group communi-
cation feature from CoAP as described in RFC 7390 [22]
to deliver messages in multicast mode in lieu of several
point-to-point messages. For example, instead of individu-
ally updating power mode of each device, CORECONF can
send a single multicast message to simultaneously update
a group of interested devices. Consequently, the network
traffic should significantly reduce while allowing devices to
confirm readiness individually over their primary interfaces.
Such features will find ready applications in areas of Deep
Space communications and Delay Tolerant Networks (DTNs).

VII. CONCLUSION

For YANG modelled data, CORECONF-YANG/CBOR
clearly provides very efficient encoding suitable for energy
conscious and constrained devices. Moreover, the proposed
architecture provides ways to integrate the CORECONF
protocol with existing NETCONF systems. Going forward,
CORECONF aims to be the de facto standard for network
management for wide range of networks and devices.

With real-life implementations, the proposed architectures
provide a progressive path to adoption of CORECONF, allow-
ing to reap its benefits while being interoperable with existing
NETCONF environment.
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[4] Jürgen Schönwälder, Martin Björklund, and Phil Shafer.
“Network configuration management using NETCONF
and YANG”. In: IEEE Communications Magazine 48.9
(2010), pp. 166–173. DOI: 10 . 1109 / MCOM . 2010 .
5560601.

[5] Michel Veillette, Peter Van der Stok, Alexander
Pelov, et al. CoAP Management Interface (CORE-
CONF). Internet-Draft draft-ietf-core-comi-19. Work in
Progress. Internet Engineering Task Force, Nov. 2024.
48 pp. URL: https://datatracker.ietf.org/doc/draft- ietf-
core-comi/19/.

[6] Martin Björklund. The YANG 1.1 Data Modeling Lan-
guage. RFC 7950. Aug. 2016. DOI: 10.17487/RFC7950.
URL: https://www.rfc-editor.org/info/rfc7950.

[7] Anuj Sehgal, Vladislav Perelman, Siarhei Kuryla, et al.
“Management of resource constrained devices in the
internet of things”. In: IEEE Communications Magazine
50.12 (2012), pp. 144–149. DOI: 10.1109/MCOM.2012.
6384464.
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