
IKEv2 and Smart Objects
(Tero Kivinen <kivinen@iki.fi>)

1.0 Introduction

  This document tells what minimal IKEv2 implementation could look
  like. Minimal IKEv2 implementation only supports initiator end of
  the protocol, and only supports the initial IKE_SA_INIT and
  IKE_AUTH exchanges and does not initiate any other exchanges, and
  replies with empty (or error) message to all incoming requests.

  This means that most optional features of IKEv2 are left out: NAT
  Traversal, IKE SA rekey, Child SA Rekey, Multiple Child SAs,
  Deleting Child / IKE SAs, Configuration payloads, EAP
  authentication etc

  Some optimizations can be done because of this selection of
  supported features. Those optimizations are specifically pointed
  out below.

2.0 Initial exchange

  All IKE communications consist of pairs of messages: a request and
  a response. The pair is called an "exchange", and is sometimes
  called a "request/response pair". Every request requires a
  response. For every pair of IKE messages, the exchange initiator is
  responsible for retransmission in the event of a timeout.

  IKE is a reliable protocol: the initiator MUST retransmit a request
  until it either receives a corresponding response or deems the IKE
  SA to have failed.

  The minimal implementation of IKEv2 only uses first 2 exchange of
  messages called IKE_SA_INIT and IKE_AUTH which create the IKE SA
  and the first child SA. In addition to those messages minimal IKEv2
  implementation need to understand CREATE_CHILD_SA request so it can
  reply with CREATE_CHILD_SA error response saying NO_ADDITIONAL_SAS
  to it, and understand INFORMATIONAL request so much, it can reply
  with empty INFORMATIONAL response to it.

  All messages following the IKE_SA_INIT exchange are
  cryptographically protected using the cryptographic algorithms and
  keys negotiated in the IKE_SA_INIT exchange.

  Every IKE message contains a Message ID as part of its fixed
  header. This Message ID is used to match up requests and responses,
  and to identify retransmissions of messages.

  Minimal implementation need only support of being initiator, so it
  does not ever need to send any other request as one IKE_SA_INIT,



  and one IKE_AUTH message. As those messages have fixed Message IDs
  (0 and 1) it does not need to keep track of its own Message IDs
  after that.

  As all incoming requests are just repied to, but not processed in
  other ways, there is no need to protect against replay attacks.
  This means minimal implementation can always answer to request
  coming in with same Message ID than what the request had, and then
  forget the request/response pair immediately.

  In the following descriptions, the payloads contained in the
  message are indicated by names as listed below.

  Notation    Payload
  -----------------------------------------
  AUTH        Authentication
  CERTREQ     Certificate Request
  HDR         IKE header (not a payload)
  IDi         Identification - Initiator
  IDr         Identification - Responder
  KE          Key Exchange
  Ni, Nr      Nonce
  N           Notify
  SA          Security Association
  SK          Encrypted and Authenticated
  TSi         Traffic Selector - Initiator
  TSr         Traffic Selector - Responder

  The initial exchanges are as follows:

  Initiator                         Responder
  -------------------------------------------------------------------
  HDR(SPIi=xxx, SPIr=0, IKE_SA_INIT,
      Flags: Initiator, Message ID=0),
      SAi1, KEi, Ni  -->

                     <--  HDR(SPIi=xxx, SPIr=yyy, IKE_SA_INIT,
                              Flags: Response, Message ID=0),
                              SAr1, KEr, Nr, [CERTREQ]

  HDR contains the Security Parameter Indexes (SPIs), version
  numbers, and flags of various sorts. Each endpoint chooses one of
  the two SPIs and MUST choose them so as to be unique identifiers of
  an IKE SA. An SPI value of zero is special: it indicates that the
  remote SPI value is not yet known by the sender.

  The SAi1 payload states the cryptographic algorithms the initiator
  supports for the IKE SA. The KEi and KEr payload contain
  Diffie-Hellman values and Ni and Nr are the nonces. The SAr1
  contains chosen cryptographic suite from initiator's offered



  choices. Minimal implementation using shared secrets will ignore
  the CERTREQ payload.

  Minimal implementation will most likely support exactly one set of
  cryptographic algorithms, meaning the SAi1 payload will be static.
  It needs to check that the SAr1 received matches the proposal it
  sent.

  At this point in the negotiation, each party can generate SKEYSEED,
  from which all keys are derived for that IKE SA.

  The keys used for the encryption and integrity protection are
  derived from SKEYSEED and are known as SK_e (encryption) and SK_a
  (authentication, a.k.a. integrity protection). A separate SK_e and
  SK_a is computed for each direction. The keys used to protect
  messages from the original initiator are SK_ai and SK_ei. The keys
  used to protect messages in the other direction are SK_ar and
  SK_er. The notation SK { ... } indicates that these payloads are
  encrypted and integrity protected using that direction's SK_e and
  SK_a.

  HDR(SPIi=xxx, SPIr=yyy, IKE_AUTH,
      Flags: Initiator, Message ID=1),
      SK {IDi, AUTH, SAi2, TSi, TSr,
          N(INITIAL_CONTACT)}  -->

                    <--  HDR(SPIi=xxx, SPIr=yyy, IKE_AUTH, Flags:
                             Response, Message ID=1),
                             SK {IDr, AUTH, SAr2, TSi, TSr}

  The initiator asserts its identity with the IDi payload, proves
  knowledge of the secret corresponding to IDi and integrity protects
  the contents of the first message using the AUTH payload. The
  responder asserts its identity with the IDr payload, authenticates
  its identity and protects the integrity of the second message with
  the AUTH payload.

  As minimal implementation usually has only one host where it
  connects, and that means it has only one shared secret. This means
  it does not need to care about ID payloads that much. If the other
  end sends AUTH payload which initiator can verify using the shared
  secret it has, then it knows the other end is the peer it was
  configured to talk to.

  In the IKE_AUTH initiator sends SA offer(s) in the SA payload, and
  the proposed Traffic Selectors for the proposed Child SA in the TSi
  and TSr payloads. The responder replies with the accepted offer in
  an SA payload, and selected Traffic Selectors. The selected Traffic
  Selectors may be a subset of what the initiator proposed.



  In the minimal implementation both SA payloads and TS payloads are
  going to be mostly static. The SA payload will have the SPI value
  used in the ESP, but the algorithms are most likely going to be
  the one and only supported set. The TS payloads on the initiator
  end will most likely say from any to any, i.e. full wildcard
  ranges, or from the local IP to the remote IP. In the wildcard case
  the server quite often narrow the range down to the one IP address
  pair. Using single IP address pair as a traffic selectors when
  sending IKE_AUTH will simplify processing as then server will
  either accept that pair or return error. If wildcard ranges are
  used, there is possibility that server narrows the range to some
  other range than what is used by the minimal implementation. 

  The IKE_AUTH (and IKE_SA_INIT) may contain multiple status
  notification payloads which can be ignored by minimal
  implementation. There can also be Vendor ID, Certificate,
  Certificate Request or Configuration payloads, but those can be
  ignored by the minimal implementation doing shared secret
  authentication. 

  When using shared secret authentication, the peers are
  authenticated by having each calculating a MAC over a block of
  data.

  The initiator might also get response back having notification
  payload with error code inside. As that error code will be
  unauthenticated and make be faked, there is no need to do anything
  for those. Minimal implementation can simply ignore those and
  retransmit its request until it times out and if that happens then
  the IKE SA (and Child SA) creation failed.

  Responder might also reply with IKE_AUTH response packet which do
  not contain payloads needed to set up Child SA (SAr2, TSi and TSr),
  but contains AUTH payload and an error. As minimal implementation
  probably do not support multiple SAs nor sending the
  CREATE_CHILD_SA exchanges the IKE SA is useless for initiator. It
  can delete the IKE SA and start over from the beginning (which
  might fail again if this is configuration error, or it might
  succeed if this was temporal failure).

2.1 Other exchanges

  Minimal implementation needs to be able to reply to INFORMATIONAL
  request by sending empty reply back:

  Initiator                         Responder
  -------------------------------------------------------------------
                     <--  HDR(SPIi=xxx, SPIr=yyy, INFORMATIONAL,
                              Flags: none,  Message ID=m),
                              SK {...}



  HDR(SPIi=xxx, SPIr=yyy, INFORMATIONAL,
      Flags: Initiator | Response,
      Message ID=m),
      SK {}  -->

  Minimal implementation also needs to be able to reject
  CREATE_CHILD_SA exchanges by sending NO_ADDITIONAL_SAS error notify
  back:

  Initiator                         Responder
  -------------------------------------------------------------------
                     <--  HDR(SPIi=xxx, SPIy=yyy, CREATE_CHILD_SA,
                              Flags: none, Message ID=m),
                              SK {...}

  HDR(SPIi=xxx, SPIr=yyy, CREATE_CHILD_SA,
      Flags: Initiator | Response, Message ID=m),
      SK {N(NO_ADDITIONAL_SAS)}  -->

3.0 Conclusions

  Minimal IKEv2 implementation can omit lots of complex IKEv2
  optional features, and get IKEv2 implementation that only supports
  initiating one ESP to known end point. Such implementation can be
  written in very little code, in our tests we wrote two separate
  implementations of minimal IKEv2 implementations using two
  different high level languages (perl and python) in less than 1000
  lines of source code (both implementations also supported minimal
  ESP and ICMP stack to be able to send out one ping packet and parse
  the reply to verify that the key material was generated correctly).

  Minimal IKEv2 implementation is usable in settings where device is
  sending out periodic packets like sensor data, or sending packet
  based on the user actions (pressing light switch). In such setups
  the device creates IKEv2 SA, IPsec SA and then sends one ESP packet
  (or stream of ESP packets) to the known destination. The
  communication is always initiated from the device, and there is no
  requirement for it to be able to respond to the any communication
  attempts initiated to its direction.

  Initial configuration of the device can be handled in the same way,
  i.e. when the device is first time booted up it uses some mechanism
  to find the local security gateway and then connects to that
  gateway using fixed shared secret to fetch initial configuration.


