Challenges of Sleeping Nodes

Margaret Wasserman
Painless Security, LLC
mrw@painless-security.com

What Are Sleeping Nodes?

- Small, low-cost, battery-powered nodes often "sleep" to extend battery life
 - Keep just enough of the system on to wake up on schedule
 - Radio receiver and transmitter are off
 - All high-power chips (radio chips, CPU) are off
- Wake up periodically to perform functions
 - Sensors: Take/report sensor readings
 - Actuators: Poll for events/messages, take appropriate actions
- Devices may sleep 99% of the time, or more

Protocol Challenges

- Sleeping nodes are not "always on"
 - Increasing number of IETF protocols expect nodes to be "always on", including IPv6 ND & DAD.
 - Most multicast protocols don't work well for sleeping nodes
- Costs of leaving and rejoining a network or application may be prohibitive
 - IP no longer provides best-effort delivery
 - Need to determine you are on the same network before using IP address(es) - DNA, DHCP
 - Need to reestablish Neighbor Cache entries before sending packets
- Verbose Protocols
 - Every round trip requires receiver to stay on for another RTT
 - Congestion concerns are not the only reason to limit message size
 - Longer packets take more energy to transmit

Possible Solutions

- "Always On" assumption
 - Consider alternative paradigm for sleeping nodes
 - End-node polling vs. sending events/messages as they happen?
 - Gateways/Routers proxy for nodes that sleep (Proxy ND, etc.)
- High cost to rejoin network
 - Goal is to determine that a mobile node has not moved to another network
 - Why isn't detection of the same layer 2 network good enough?
 - Same SSID, L2 security credentials work, etc.
- Verbose Protocols
 - Minimize round trips and required messages
 - Consider compressed or succinct message formats
 - COAP, XML compression, etc.
 - Use UDP with one-way messages when appropriate

Which Protocols?

- At minimum, Internet Protocol (IPv4 & v6) should continue to work on these nodes
 - IPv4 & ARP work (minus some optional add-ons)
 - IPv6 has challenges, especially in ND
 - Essentially, many optional add-ons in IPv4 are now required in all IPv6 implementations
 - Address autoconfiguration, DNA, IGMP/Multicast, DAD, etc.
- Device-to-device, configuration, management, service discovery
 - DNS, DHCP, SNMP, NETCONF, DNS-SD, SDP, etc.
- Some applications assume a human at both ends, and won't be used on sleeping devices
 - Instant messaging, voice, multimedia, etc.
 - But, are we sure? (consider HTML & Jabber)

Wider Applicability

- Described as problem for low-cost, battery-powered, wireless sensors and actuators, but principals may apply to other nodes
 - Could extend laptop, touch pad or cell phone battery life
 - Could reduce energy consumption of wall-powered nodes

Just because the energy is available, doesn't mean we should squander it!