
Some Considerations on Routing in Particular and
Lossy Environments

Thomas Clausen, Ulrich Herberg
Laboratoire d’Informatique (LIX) – Ecole Polytechnique, France

Thomas@ThomasClausen.org, Ulrich@Herberg.name

Abstract—This paper presents a selection of observations and
experiences acquired when producing a prototype implementa-
tion of RPL as well as an evaluation of the applicability of this
protocol for various specific “real-world” deployments.

I. INTRODUCTION

RPL – the “Routing Protocol for Low Power and Lossy
Networks” (RPL) [1] – is a proposal for an IPv6 routing pro-
tocol for Low-power Lossy Networks (LLNs), by the ROLL
Working Group in the Internet Engineering Task Force (IETF).
The basic construct in RPL is a DODAG – a destination
oriented directed acyclic graph, rooted in a “controller”.

Traffic inside the LLN flows along this DODAG, either up-
ward (towards the “controller”) or downward. In RPL, upward
routes, having the controller as destination (either by way of
explicitly addressing the destination, or by using the controller
as “gateway”), are provided by the DODAG construction
mechanism: each LLN router selects a set of parents, on a path
towards the controller, as well as a preferred parent. Once a
router is part of a DODAG (i.e. has selected parents) will emit
DODAG Information Object (DIO) messages, using link-local
multicasting, indicating its respective rank in the DODAG (i.e.
its position – distance according to some metric(s), in the
simplest form hop-count – with respect to the root).

Routes for any destination inside the LLN, other than
the controller, are provided by these destinations generating
Destination Advertisement Objects (DAOs).

II. RPL DATA TRAFFIC FLOWS

RPL makes a-priori assumptions of traffic patterns:
sensor-to-controller traffic (multipoint-to-point) is predomi-
nant, controller-to-sensor traffic (point-to-multipoint) is rare
and sensor-to-sensor traffic is somewhat esoteric.

An LLN router in RPL will select a “preferred parent”, to
serve as a default route towards the controller (or prefixes
advertised by the controller). Thus, RPL provides “upward
routes” or “multipoint-to-point routes” from the sensors to-
wards the controller.

An LLN router in RPL, which wishes to act as a destination
for traffic (“downward routes” or “point-to-multipoint”), will
issue DAOs upwards in the DODAG towards the controller,
describing which prefixes belong to, and can be reached via,
that LLN router.

Sensor-to-sensor routes are supported by having the source
sensor transmit, via its default route, to the controller, which

will send the data packet downward towards the destination
sensor.

A. Why This Is A Critical Point

The data traffic characteristics assumed by RPL does not
represent a universal distribution of traffic patterns in LLNs,
for example:

• There are scenarios in which sensor-to-sensor traffic is
assumed a more common occurrence, such as [2].

• There are scenarios, in which all traffic is bi-directional,
such as for example in case sensor devices in the LLN
are, in majority, “actively read”: a request is issued by
the controller to a specific sensor, and the sensor value
is expected returned.

For the former, all sensor-to-sensor routes transit the root,
possibly causing congestion in the wireless spectrum near the
root, as well as draining energy from the intermediate routers
on an unnecessarily long path.

For the latter, all LLN routers are required to generate
DAOs, which generates a considerable control traffic overhead.

III. DAO MECHANISM

Two distinct “modes of operation” for the downward mech-
anism are specified in RPL:

(i) In storing mode, each router is assumed to maintain
routes to all LLN routers in its sub-DODAG, i.e. routers that
are “deeper down” in the DAG. DAOs propagate from the
routers towards the controller, where each intermediate router
adds its reverse routing stack to the DAO message (aggregating
routes where possible).

(ii) In non-storing mode, only the controller stores routes
to all LLN routers in the network. Each LLN router unicasts
DAOs to the controller, which then calculates routes to all
destinations by “piecing together” the information collected
from DAO messages (which contain the destination prefix of
the LLN router and addresses of the parents through which it
is reachable). In non-storing mode, downward traffic is sent
by way of source.

A. Why This Is A Critical Point

In non-storing mode, source-routes increase the L3 header
length – with small MTUs, this may lead to increased frag-
mentation, thus successful delivery of an IP packet depends
on successful delivery of possibly more fragments – a single



fragment lost renders otherwise successfully delivered frag-
ments of the IP packet lost. LLNs are, generally, characterized
by higher loss-rates and smaller MTUs [3]. In addition to
possible fragmentation, the maximum length of the source
routing header [4] is limited to 255 octets at maximum. As
each IPv6 address has a length of 16 octets, not more than 15
hops from the source to the destination are possible. Even with
address compression, such as specified in [5], the maximum
path length may not exceed 127 hops. This excludes scenarios
with long “chain-like” topologies, such as traffic lights along
a street.

In storing mode, each LLN router has to store routes for
its sub-DODAG. This implies that, for LLN routers near the
controller, the required storage is only bounded by the number
of paths to all other LLN routers in the network. As RPL
targets constrained devices with little memory, but in networks
consisting of thousands of routers, the storing capacity on
these LLN routers may not be sufficient.

IV. BIDIRECTIONALITY HYPOTHESIS

Parents (and the preferred parent) are selected based on
receipt of DIOs, without verification of the ability for a LLN
router to successfully communicate with the parent – i.e.
without any bidirectionality check of links. However, the basic
use of links is for “upward” routes, i.e. for the LLN router
to use a parent (the preferred parent) as relay towards the
DODAG controller – in the opposite direction of the one in
which the DIO was received.

A. Why This Is A Critical Point

Unidirectional links are no rare occurrence, such as is
known from wireless multi-hop networks. If an LLN router
receives a DIO on such a unidirectional link, and selects the
originator of the DIO as parent, that would be a bad choice:
unicast traffic in the upward direction would be lost. If the
router had verified the bidirectionality of links, it might have
selected a better parent, to which it has a bidirectional link.

V. WHY NUD IS NOT A SOLUTION

[1] suggests using Neighbor Unreachability Detection
(NUD) [6] to detect and recover from the situation of unidirec-
tional links between a LLN router and its (preferred) parent(s).
When a tries (and fails) to actually use b for forwarding traffic,
NUD is supposed engaged to detect and prompt corrective
action, e.g. by way of selecting an alternative preferred parent.

NUD is based upon observing if a data packet is making
forward progress towards the destination, either by way of
indicators from upper-layer protocols (such as TCP)1 or –
failing that – by unicast probing by way of transmitting a
unicast Neighbor Solicitation message and expecting that a
solicited Neighbor Advertisement message be returned.

1Though not called out in [6], also from lower-layer protocols (such as
Link Layer ACKs)

A. Why This Is A Critical Point

A LLN router may receive, transiently, a DIO from a router,
much closer (in terms of rank) to the controller than any other
router from which a DIO has been received. Some, espe-
cially wireless, link layers may exhibit different transmission
characteristics between multicast and unicast transmissions2,
leading to a (multicast) DIO being received from farther
away than a unicast transmission can reach. DIOs are sent
(downward) using link-local multicast, whereas the traffic
flowing in the opposite direction (upward) is unicast. Thus,
a received (multicast) DIO may not be indicative of useful
unicast connectivity – yet, RPL might cause this LLN router
to select this attractive router as its preferred parent. This may
happen both at initialization or at any time during the LLN
lifetime, as RPL allows attachment to a “better parent” at any
time.

A DODAG so constructed may appear stable and converged
until such time that unicast traffic is to be sent and, thus, NUD
invoked. Detecting only at that point that unicast connectivity
is not maintained, and causing local (and possibly global)
repairs exactly at that time, may lead to traffic not being
deliverable.

Also, absent all LLN routers consistently advertising their
reachability through DAO messages, a protocol requiring bi-
directional flows between the communicating devices, such as
TCP, will be unable to operate.

Finally, upon having been notified by NUD that the “next
hop” is unreachable, a LLN router must discard the preferred
parent and select another preferred parent – hoping that this
time, the preferred parent is actually reachable. Also, if NUD
indicates “no forward progress” based on an upper-layer pro-
tocol, there is no guarantee that the problem stems exclusively
from the preferred parent being unreachable. Indeed, it may
be a problem father ahead, possibly outside the LLN, thus
changing preferred parent will do nothing to alleviate the
situation.

VI. RPL IMPLEMENTABILITY AND COMPLEXITY

RPL is designed to operate on “LLN routers [...] with
constraints on processing power, memory, and energy (battery
power)” [1]. However, the 159 pages long specification3, de-
scribes complex mechanisms (e.g. the upwards and downward
data flows, a security solution, manageability of LLN routers,
auxiliary functions for autoconfiguration of LLN routers, etc.),
and provides no less than 9 message types, and 10 different
message options.

To give one example, the ContikiRPL implementation4,
which does not provide non-storing mode or any security fea-
tures, consumes about 50 KByte of memory. Sensor hardware,

2Such is the case for some implementations of IEEE 802.11b, where
multicast/broadcast transmissions are sent at much lower bit-rates than are
unicast. IEEE 802.11b is, of course, not suggested as a viable interface for
LLNs, but serves to illustrate that such asymmetric designs exist.

3Plus additional specifications for routing headers [4], Trickle timer [7],
routing metrics [8] and objective function [9].

4http://www.sics.se/contiki



such as MSP430 sensor platforms, does not contain much
more memory than that, i.e. there may not be much space
left to deploy any application on the LLN router.

A. Why This Is A Critical Point

Since RPL is designed to be the routing protocol for LLNs,
which covers all the diverse applications requirements listed
in [2], [10], [11], [12], it is possible that (i) due to limited
memory capacity of the LLN routers, and (ii) due to expensive
development cost of the routing protocol implementation,
many RPL implementations will only support a partial set of
features from the specification, leading to non-interoperable
implementations.

As RPL is targeted for a “Standards Track” publication,
interoperable implementations are desired. Already during the
IPSO Interoperability Workshop in 2010 was it observed that
several implementations were not interoperable, as they only
implemented one mode of operation or the other (i.e. storing
or non-storing mode).

VII. RPL UNDERSPECIFICATION

While [1] is verbose in many parts, as described in sec-
tion VI, some mechanisms are underspecified.

While for DIOs, the Trickle timer specifies an efficient
and easy-to-understand timing for message transmission, the
timing of DAO transmission is not explicit. As each DAO may
have a limited lifetime, one “best guess” for implementers
would be to send DAO periodically, just before the life-time
of the previous DAO expires. Since DAOs may be lost, another
“best guess” would be to send several DAOs shortly one after
the other in order to increase probability that at least one DAO
is successfully received.

The same underspecification applies for DAO-ACK mes-
sages: optionally, on reception of a DAO, an LLN router
may acknowledge successful reception by sending back a
DAO-ACK. Again, timing of the DAO-ACK messages is not
specified by RPL.

A. Why This Is A Critical Point

By not specifying details about message transmission in-
tervals and required actions when receiving DAO and DAO-
ACKs, implementations may exhibit a bad performance if not
carefully implemented. Some examples are:

1) If DAO messages are not sent in due time before the
previous DAO expires (or if the DAO is lost during
transmission), the routing entry will expire before it is
renewed, leading to a possible data traffic loss.

2) RPL does not specify to use jitter [13] (i.e. small random
delay for message transmissions). If DAOs are sent pe-
riodically, adjacent routers may transmit DAO messages
at the same time, leading to link layer collisions.

3) In non-storing mode, the “piece-wise calculation” of
routes to a destination from which a DAO has been
received, relies on previous reception of DAOs from
intermediate routers along the path. If not all of these
DAOs from intermediate routers have been received,

route calculation is not possible, and DAO-ACKs or data
traffic cannot be sent to that destination.

Other examples of underspecification include the local re-
pair mechanism, which may lead to loops and thus data traffic
loss, if not carefully implemented: a router discovering that
all its parents are unreachable, may – according to the RPL
specification – “detach” from the DODAG, i.e. increase its
own rank to infinity. It may then “poison” its sub-DODAG by
advertising its infinite rank in its DIOs. If, however, the router
receives a DIO before it transmits the “poisoned” DIO, it may
attach to its own sub-DODAG, creating a loop. If, instead, it
had waited some time before processing DIOs again, chances
are it would have succeeded in poisoning its sub-DODAG and
thus avoided the loop.

VIII. POSITION

While RPL provides support for all of multipoint-to-point,
point-to-multipoint and sensor-to-sensor traffic, its strength
clearly is in providing connectivity for multipoint-to-point
flows. Modulo the issues presented regarding bi-directionality
of links and the possibility of loops, the DODAG formation
mechanism is elegant, efficient, and relatively well understood.
The DIO message generation/processing rules and the trickle
timers [7], necessary for this DODAG formation, are relatively
straight-forward to implement as well – are actually not very
complex. The state required in each router is also minimal
and bounded – down to a single entry in the routing table
(the preferred parent). Such pure multipoint-to-point traffic
flows are not rare either: data-acquisition networks, where
sensors on their own impulse communicate their readings
to a controller are important, e.g. in various environmental
monitoring or data acquisition scenarios.

As elegant as the support for pure multipoint-to-point traffic
flows (i.e. pure upward routes) by way of DODAG construc-
tion is, the support for other traffic flows appears less so:
the DAO mechanism, supporting downward routes, is what
enables bi-directional traffic flows (e.g. for active reading
of sensors) and sensor-to-sensor flows by way of dog-leg-
routing through the controller. This mechanism appears as a
complicated addition to the elegant DODAG mechanism. It is,
actually, also underspecified. Examples of such “underspeci-
fication” include the proper behavior with respect to DAO-
ACKs and DAO retransmissions. The strength of the DODAG
mechanism is that, by way of trickle timers, DIO emissions
automatically taper off as the network becomes stable. For
DAOs, a “best guess” – as this is not specified – is for
these to be periodic. Similarly, RPL specifies two incompatible
modes for such downward routing: storing mode, wherein all
LLN routers are expected to have “unbounded” memory (or,
at least, enough to store complete routing tables), and non-
storing mode necessitating source-routing thus possibly more
fragmentation and higher probability of IP packets being lost.
Both of these appear to be challenging in Low-power Lossy
Networks with resource-constrained devices.

An example of an active reading deployment is “smart
metering”, where a utility company wishes to interrogate



individual consumption of its clients: each reading is initiated
by the controller requesting the meter reading and the meter
replying with the current consumption. Typically, a utility
company will wish to read “several thousand meters” – but
that over the course of a day (or more). Thus, all downward
routes need not be immediately available – nor permanently
maintained – but need be discoverable when needed.

Protocols so discovering routes on demand exist, such as
AODV [14] and a proposed simplification for LLNs entitled
LOAD [15]; neither of which requires source-routing, however
both may require more state than a single routing table entry
in each router. It should be noted that the RPL storing-
mode, which also eliminates the need for source-routing,
likewise does not have a bounded state. In an active reading
deployment, however, this state requirement may, in the case
of a protocol such as LOAD or AODV, be reasonably managed
by the controller by way of spacing readings appropriately so
as to keep the number of active concurrent routes (and, so, the
state required in each router) below a threshold supported by
each LLN router.

While evaluating the complexity of a protocol based on
the complexity of its specification isn’t entirely fair, it is still
indicative that while the RPL specification counts 159 pages,
and depends on several other specifications (trickle, metrics,
6lowpan routing header, etc.), LOAD counts 17 pages and
AODV (published as RFC) 37 pages. One possible solution
to the problem of complexity could be to “modularize” RPL,
i.e., extract different modules (such as for upward data traffic,
storing mode, non-storing mode) into separate specifications
with a common framework that allows implementations to
select which modules to implement, and to define a mechanism
to assure that two interoperating implementations provide the
same modules, or at least stipulate which modules a given
implementation contains.

A legitimate question, from the position of active reading,
is therefore what the extra complexity of implementing RPL
brings. A further legitimate question to ask is what resulting
protocol would have emerged, had the design-basis been active
reading rather than data acquisition.

A consequence of the above could be to suggest that a
possible LLN routing protocol solution would be modular,
consisting of:

• the DODAG formation mechanism from RPL, specifi-
cally the DIO and Trickle components;

• an on-demand route discovery mechanism, for example
derived from LOAD or AODV.

With the ability to combine these, as needed, for a given
deployment/scenario, it might provide a both elegant, efficient
and simple routing solution.

REFERENCES

[1] T. Winter, P. Thubert, A. Brandt, T. Clausen, J. Hui, R. Kelsey, P. Levis,
K. Pister, R. Struik, and J. Vasseur, “RPL: IPv6 Routing Protocol for
Low power and Lossy Networks,” February 2011, Internet Draft, work
in progress, draft-ietf-roll-rpl-18.

[2] J. Martocci, P. D. Mi, N. Riou, and W. Vermeylen, “Building Automation
Routing Requirements in Low Power and Lossy Networks,” June 2010,
Informational RFC 5867.

[3] “ROLL Charter,” http://datatracker.ietf.org/wg/roll/charter/.
[4] J. Hui, J. Vasseur, D. Culler, and V. Manral, “An IPv6 Routing Header

for Source Routes with RPL,” October 2010, Internet Draft, work in
progress, draft-ietf-6man-rpl-routing-header-01.

[5] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “Transmission of
IPv6 Packets over IEEE 802.15.4 Networks,” September 2007, Standards
Track RFC 4944.

[6] T. Narten, E. Nordmark, W. Simpson, and H. Soliman, “Neighbor
Discovery for IP version 6 (IPv6),” September 2007, Standards Track
RFC 4861.

[7] P. Levis, T. Clausen, J. Hui, O. Gnawali, and J. Ko, “The Trickle
Algorithm,” January 2011, Internet Draft, work in progress, draft-ietf-
roll-trickle-08.

[8] J. Vasseur, M. Kim, K. Pister, N. Dejean, and D. Barthel, “Routing
Metrics used for Path Calculation in Low Power and Lossy Networks,”
January 2011, Internet Draft, work in progress, draft-ietf-roll-routing-
metrics-17.

[9] P. Thubert, “RPL Objective Function 0,” January 2011, Internet Draft,
work in progress, draft-ietf-roll-of0-05.

[10] K. Pister, P. Thubert, S. Dwars, and T. Phinney, “Industrial Routing
Requirements in Low-Power and Lossy Networks,” October 2009,
Informational RFC 5673.

[11] A. Brandt, J. Buron, and G. Porcu, “Home Automation Routing Require-
ments in Low-Power and Lossy Networks,” April 2010, Informational
RFC 5826.

[12] M. Dohler, T. Watteyne, T. Winter, and D. Barthel, “Routing Re-
quirements for Urban Low-Power and Lossy Networks,” May 2009,
Informational RFC 5548.

[13] T. Clausen, C. Dearlove, and B. Adamson, “Jitter Considerations in
Mobile Ad Hoc Networks (MANETs),” February 2008, Standards Track
RFC 5148.

[14] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc On-Demand Distance
Vector (AODV) Routing,” July 2003, Experimental RFC 3561.

[15] K. Kim, S. D. Park, G. Montenegro, S. Yoo, and N. Kushalnagar,
“6LoWPAN Ad Hoc On-Demand Distance Vector Routing (LOAD),”
June 2007, Internet Draft, work in progress, draft-daniel-6lowpan-load-
adhoc-routing-03.


