#### **Robust Header Compression**

Mikael Degermark <micke @ cs.arizona.edu> Co-chair, ROHC WG (to be) University of Arizona/ Ericsson Research

### Robust header compression

Goal: Making IP-telephony as speech service economically viable compared to traditional circuit switched telephony.



## Link properties

- Wireless cellular networks usually run at a point where there is around 1% frame loss.
  - Raw bit-error rate 10
  - %, after channel coding, etc, 1e-2 to 1e-6.
- Voice codecs can cope with such loss and still deliver reasonable service.
- A loss event involves 1-2 packets. For some technologies 3. Longer events *very* rare.
  - True for WCDMA, GSM, CDMA-2000, EDGE.

| IP voice packe          | t 40+8+12+24            |
|-------------------------|-------------------------|
| 20+8+12+24              | IPv6 header             |
| IPv4 header             |                         |
| UDP header              | UDP header              |
| RTP header              | RTP header              |
| Payload<br>(Voice data) | Payload<br>(Voice data) |



HC exploits regularities in stream of headers. Schemes above suffer under high-loss & irregularities. "twice"

## Requirements

- Complete transparency
- No production of erroneous headers
- No added packet loss due to header compr.
- IPv6, IPv4, RTP/UDP/IP, TCP/IP
  - Extension headers, TCP options
  - RTP for voice & video
- Compress headers of tunneled packets
- Should be possible to compress over simplex links.

### Most loss due to context damage

- Large delay-bandwidth product over link
- Unrepaired context damage implies loss of entire "window", i.e., 100-200 ms of voice.
- So, avoid context damage or repair without going across link.
  - ROCCO: repair without going across link
  - ACE: delta in compressed header is relative to hdr confirmed to have reached decompressor

### Robust header compression

Avg. header size less than 2 bytes.

- Minimal header is one byte
- Both ROCCO and ACE
- Neither add significantly to loss rate.
- No reliance on transport checksums
  - May not be present.
  - Voice codecs might want data even if damaged.
- Entirely possible to do similar things for TCP.

# Tunneling & Security

- Encypted or authentication data cannot be compressed. (AH adds significantly)
- Outer header in an encrypted tunnel can be compressed (IPHC, rfc2507)
- Inner headers could be compressed at tunnel entry point, but currently no defined way to do so for transport headers.
  - Reordering.
  - Work in AVT, but may not perform well enough when RTP stream subject to high loss.

#### Compression of inner headers

- for end-to-end encryption.
- for tunnels across "core network"
- Need robustness against reordering & loss & irregularities in packet stream.
- work in AVT, but may not produce robust solution

#### **Compression of signaling packets?**

#### Further information

- rohc @ cdt.luth.se
- draft-degermark-crtp-eval-01.{txt, ps}
- draft-degermark-robhc-requirements-00.txt
- draft-jonsson-robust-hc-03.{txt, ps}
- Rfcs 1144, 2507-2509